

80 Eastern Boulevard, Suite 5 Glastonbury, CT 06033 (860) 325-7771 ekiconsult.com

19 September 2023

East Haddam Land Trust, Inc. Attention Mr. Cameron Beard P.O. Box 122 East Haddam, CT 06423

Subject: Soil Environmental Investigation Summary Honey Hill Farm Acquisition - Farm Dump Area East Haddam, Connecticut (EKI Project #C30138.00)

Dear Mr. Beard:

INTRODUCTION

EKI Environment & Water, Inc. (EKI) is pleased to provide this Soil Environmental Investigation Summary report to the East Haddam Land Trust (EHLT). The report summarizes the soil environmental investigation activities performed at the Honey Hill Farm, identified in the Town of East Haddam Tax Assessor's files as 103 Honey Hill Road and Map-Lot #013-003 (the Site) (Figures 1 through 3). The Site is comprised of approximately 126-acres that is accessed from the northern side of Honey Hill Road, northeast of the intersection with Hedlund Road.

Information provided to EKI indicates that a "farm dump" was discovered by the EHLT at the Site and this "farm dump" is currently the subject of inquiries by the Connecticut Department of Energy and Environmental (CTDEEP) in connection with CTDEEP's commitment to provide acquisition funding. This investigation was performed to obtain qualitative and quantitative data necessary to evaluate what mitigation measures may be required to support the land acquisition.

BACKGROUND

As reported in the 1 September 2022 the *East Haddam Land Trust-Honey Hill Farm Affidavit Regarding Clean-up of Dump Site* (Attachment A) provided to EKI, limited soil and debris removal activities were performed at the Site in August 2022. Information provided within the affidavit is summarized as follows:

- Initial Discovery: In 2021, during preliminary Site visits by the EHLT, a suspected dump area was observed at the Site. The dimensions of the suspected dump area, as indicated by the presence of surface debris, were reported as approximately 60 feet by 40 feet (the subject area).
- **Cleanup Agreement:** When the current owner signed the purchase agreement on 1 August 2022, EHLT was permitted to cleanup materials observed to be stored and/or discarded within the subject area on Site.
- EHLT Observations and Cleanup Activities:

The following tasks were conducted under EHLT oversight:

• Clearing vegetation to access debris within the subject area.

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 2 of 9

- EHLT Observations:
 - Once the vegetation was cleared household type solid waste was observed. The materials observed included: furniture, appliances, and household trash. Based upon observations by EHLT personnel some of the materials were suspected to be of recent origin, possibly within the past 10-30 years. No evidence of chemical and or petroleum type products or waste disposal was observed.
 - Older materials including farm tools, metal debris, and some decayed barn boards and wood had been observed.

Removal Process:

To mitigate the readily observed debris, EHLT personnel removed approximately 3.06 tons of nonmetallic waste, 3.11 tons of scrap metal and other waste consisting of television, computer monitors, tires and vehicle batteries using a combination of mechanical and manual removal processes. These materials were then transported to the East Haddam Transfer Station for recycling.

The EHLT reported that some asphalt shingles were found during the investigation and removal activities and that some of these shingles were degraded. Despite removal efforts, residual traces of the shingles remain. Additionally, degraded wood barn remnants remained in place, some of which contained painted surfaces.

ENVIRONMENTAL SETTING

The Site is located in a rural area of East Haddam, Connecticut. The geographic location of the Site is depicted on Figure 1. Based on the topography of the area, the inferred groundwater flow direction is to the southwest towards an unnamed brook that feeds into the Connecticut River. Based on the August 2023 site investigation activities performed by EKI, overburden groundwater is expected to be located approximately 3 to 4 feet below grade surface (bgs) within the subject area.

Within the area of the Site, East Haddam's underlying bedrock predominantly consists of metamorphic rocks from the Merrimack and Central Maine oceanic terranes. A small segment in the southeast portion of the Site is mapped as the Proterozoic Avalonian metamorphic micro-continental terrane. The Merrimack Terrane is largely defined by the Silurian-Ordovician Hebron Formation calc-silicate gneiss and granofels, notably exposed at Goodspeed Landing. The Central Maine Terrane is marked by the Ordovician Brimfield siliceous schist and gneiss. A pocket of the Bronson Hill Terrane, specifically the Middletown formation meta-volcanics, is discernible just southwest of Lake Hayward.

According to the CTDEEP Water Classifications for East Haddam, Connecticut, dated 2018, groundwater within the vicinity of the Site's is classified as GA. This categorization signifies that the groundwater is assumed to be fit for human consumption without treatment. The CTDEEP Water Classification map also indicates that this Site is not situated within an Area of Contribution to Public Water Supply Well. The

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 3 of 9

CTDEEP Aquifer Protection Area program, updated in 2021, corroborates that the Site is not located an Aquifer Protection Area.

The CTDEEP Natural Diversity Data Base Areas for East Haddam, dated 2022, indicates that the Site is not mapped within any critical habitat, or a region designated for State/Federal listed species. Data from the National Wetlands Inventory indicates the absence of wetlands within the Site. An unnamed brook lies approximately 400 feet to the northwest of the Site, which ultimately discharges into the Connecticut River.

INVESTIGATION ACTIVITIES AND FINDINGS

On 25 August 2023, EKI initiated subsurface investigations within the subject area, previously identified as a dump area. The dump area was located within grass and wooded areas. The investigation was supported by the EHLT and Ray Sikorsky (excavator owner and operator).

The investigation consisted of eighteen (18) test pits and 1 trench. During test pitting, soil conditions were documented for type of soil material, fill material, potential hydrocarbon presence, and the presence and or absence of groundwater. Soil and material were field screened with a photoionization detector (PID) for total gross volatile organic compounds (VOCs) in accordance with headspace screening techniques. Test pitting was initiated on a grid, then modified to identify the vertical and horizontal extent of the debris/fill area. The locations of the test pits are depicted on Figure 4. The field investigation findings are summarized below:

- <u>Test Pits TP-01, TP-02, and TP-03</u>: Located on the north side of the farm/access road. The purpose of these test pits was to discern the native material and to identify the boundary of the debris/fill material. No debris/fill material was observed within these three test pits. The native soil consisted predominantly of coarse to fine-grained sand, coarse to fine gravel, and silt. Soils from TP-01, TP-2 and TP-03 did not exhibit visual or olfactory indications of environmental impacts or register responses on from the PID. Readings were 0.0 parts per million volume (ppmV) total VOCs, collected via headspace screening techniques.
- <u>Test Pits TP-04 to TP-07, TP-09 to TP-11, and TP-14:</u> The test pits were excavated within the subject area and extended to depths of up to 3 feet bgs. Debris such as plastic, bottles, metal, and glass were observed at the ground surface, however no subgrade debris/fill material was observed at these locations. The native soil consisted predominantly of coarse to fine-grained sand, coarse to fine gravel, and silt. Soils from TP-04 to TP-11, and TP-14 did not exhibit visual or olfactory indications of environmental impact, nor register responses on from the PID readings. PID readings were 0.0 ppmV, collected via headspace screening techniques. Soil samples were collected from test pit TP-06 at a depth of approximately 1 to 2 feet below grade and were submitted to a Connecticut certified laboratory for chemical analysis.
- <u>Test Pits TP-13 and TP-15</u>: The test pits were excavated within the subject area and extended to depths of approximately 5 feet bgs. Surficial debris such as plastic, bottles, metal, and glass were observed. Fill materials including black asphalt shingles, brown rubber, metal stakes, sheet metal, plastics, glass bottles, and brick were observed extending to depths of up to 3.5 feet bgs. The native soil below was encountered at approximately 3.5 feet bgs and extended to the bottom of

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 4 of 9

the excavations. The native soils consisted of coarse to fine grained sand, gravel, and silt. Groundwater was encountered at approximately 4.25 feet bgs. Soils from TP-13 and TP-15 did not exhibit visual or olfactory indications of environmental impact or register responses on the PID. PID readings were 0.0 ppmv for total VOCs collected via headspace screening techniques. F Soil samples were collected from test pit TP-13 at a depth of 2 to 3 feet and from test pit TP-15 at depths of 2 to 3 feet and 4 to 5 feet and submitted to a Connecticut certified laboratory for chemical analysis. Additionally, bulk material samples (Bulk-1 through Bulk-3) were also collected from buried building materials observed including roofing materials and a rubberized material for laboratory asbestos testing.

- <u>Test Pits TP-08, TP-12, TP-16 to TP-18</u>: These test pits were excavated on the periphery of the subject area and extended to depths of approximately 4 feet bgs. No surfical or debris/fill material was observed at these test pit locations. Groundwater was observed at approximately 2.75 feet bgs in TP-16 and TP-17, and at approximately 3.0 feet bgs at TP-18. The native soil consisted predominantly of coarse to fine-grained sand, coarse to fine gravel, and silt. Soils from TP-08 to TP-12, TP-16 to TP-18 did not exhibit visual or olfactory indications of environmental impact, or register responses on from the PID. PID readings were 0.0 ppmv for total VOCs via headspace screening techniques.
- <u>Trench-1:</u> Trench 1 was excavated in a roughly northeasterly to southwesterly direction between test pits TP-11 and TP-14. The trench was approximately 20 feet in length and extended to a depth of approximately 3 feet bgs. The primary purpose of the trench was to confirm the western extent of the debris/fill material. Surficial debris such as plastic, bottles, metal, and glass were observed at the trench location. No fill material was observed immediately below the surface to 3 feet bgs in the trench. Soils from the trench did not exhibit visual or olfactory indications of impact or register responses on from the PID readings were 0.0 ppmv collected via headspace screening techniques. No samples were collected.

For detailed summaries of the test pit observations, refer to Attachment B, the test pit logs. Select photographs taken during the EKI test pit investigation activities are included in Attachment C.

Based upon visual observations only of debris/fill areas, due to the lack of PID screening responses, the following soil samples were submitted for laboratory analysis. These samples were identified as being most representative of the debris/fill areas, with the exception of TP-6 which was obtained to evalaulte potential background concentrations in an area without debris / fill:

- Samples TP-13(2-3 ft), TP-14(1-2 ft), TP-15(2-3 ft), and TP-15(4-5 ft) analyzed due to the comingled soil/fill observed during the test pit investigation.
- Sample TP-6 (1-2 ft) was analyzed to obtain background concentrations.
- The soil samples were submitted to Phoenix Analytical Laboratories, Inc., of Manchester, Connecticut (Phoenix), a Connecticut certified laboratory, for one or more of the following analyses:
 - VOCs by U.S. EPA Method 8260C;
 - CT ETPH by U.S. EPA Method 8015D;
 - CT RSR Total Metals by U.S. EPA Method SW6010D;

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 5 of 9

- Pesticides by U.S. EPA Method 8081;
- Herbicides by U.S. EPA method 8151;
- PCBs by U.S. EPA Method 8082; and
- Polynuclear Aromatics (PAHs) by U.S. EPA Method 8270D.

A total of three bulk material samples (Bulk-1 through Bulk-3) were submitted to Phoenix for analysis for asbestos content by U.S. EPA 800/R/93/116.

The analytical results for the soil and bulk samples are summarized in the following sections.

BULK MATERIAL ASBESTOS ANALYTICAL RESULTS

Bulk samples Bulk-1 and Bulk-2 were collected from TP-13, and Bulk-3 was collected from TP-15. Specifically, Bulk-1 and Bulk-3 were identified as black asphalt shingles, whereas Bulk-2 was characterized as a brown rubberized material. The laboratory analytical results indicated that asbestos was not present in any of the bulk material samples.

A copy of the bulk laboratory analytical report is provided in Attachment D.

SOIL ANALYTICAL RESULTS

The laboratory analytical results have been compared the current CT DEEP Residential Direct Exposure Criteria (RES DEC) and the GA Pollutant Mobility Criteria (GA PMC) of the CTDEEP Remediation Standard Regulations (RSRs). A summary of the laboratory analytical results is presented below and in Table 1.

Soil Analytical Results for Total Metals

Concentrations of arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, vanadium, and zinc were detected in one or more of the following samples: TP-6(1-2 ft), TP-13(2-3 ft), TP-14(1-2 ft), TP-15(2-3 ft), and TP-15(4-5 ft), below the applicable numeric RSR criteria.

Arsenic was detected at concentrations above the numeric RES DEC RSR criteria of 10 milligram per kilogram (mg/kg) in samples TP-13(2-3 ft) at 16.9 (mg/kg), TP-14(1-2 ft) at 12.1 mg/kg, TP-15(2-3 ft) (37 mg/kg), and TP-15(4-5 ft) 16.9 mg/kg.

Soil Analytical Results for PAHs

PAHs were detected in one or more of the samples TP-13(2-3 ft), TP-14(1-2 ft), TP-15(2-3 ft), and TP-15(4-5 ft): Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Carbazole, Chrysene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Pentachlorophenol, Phenanthrene, and Pyrene.

The following analytes exceeded either the RES DEC and / or GA PMC criteria:

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 6 of 9

- Benzo(a)anthracene was detected at a concentration of 1,600 micrograms per kilogram (ug/kg) in TP-15(4-5 ft) which exceeded the RES DEC and GA PMC of 1,000 ug/kg.
- Benzo(a)pyrene was detected at a concentration of 1,400 ug/kg in TP-15(4-5 ft) which exceeded the RES DEC and GA PMC of 1,000 ug/kg.
- Benzo(b)fluoranthene was detected at concentrations of 1,800 ug/kg in TP-13(2-3 ft), 1,100 ug/kg in TP-15(2-3 ft), and 3,500 ug/kg in TP-15(4-5 ft) which exceeded the RES DEC and GA PMC of 1,000 ug/kg.
- Benzo(k)fluoranthene was detected at a concentration of 1,200 ug/kg in TP-15(4-5 ft) which exceeded the GA PMC of 1,000 ug/kg.
- Carbazole was detected at concentrations of 270 ug/kg in TP-13(2-3 ft) and 430 ug/kg in TP-15(4-5 ft) which exceeded the GA PMC of 200 ug/kg.
- Chrysene was detected at a concentration of 2,600 ug/kg in TP-15(4-5 ft) which exceeded the GA PMC of 1,000 ug/kg.
- Pentachlorophenol was detected at a concentration of 1,500 ug/kg in TP-15(4-5 ft) which exceeded the GA PMC of 1,000 ug/kg.

Soil Analytical Results Pesticides

The pesticides Chlordane and Dieldrin were detected in samples TP-13(2-3 ft) and/or TP-15(2-3 ft). Chlordane was detected at a concentration of 140 ug/kg in TP-13(2-3 ft) and 150 ug/kg in TP-15(2-3 ft), both exceeding the GA PMC of 66 ug/kg.

Other Soil Analytical Results

PCBs, VOCs, CTETPH, and Chlorinated Herbicides were analyzed in one or more of the test pit soil samples. These compounds were not detected above laboratory reporting limits.

Copies of the soil laboratory analytical reports are provided in Attachment D.

CONCLUSIONS AND RECOMMENDATIONS

Based on the August 2023 investigation activities conducted, the following conclusions and recommendations are provided:

- Limited sporadic debris was observed by EKI at the surface of the grass and wooded subject area. The scattered surface debris area was observed in an area that measured approximately 80 feet by 64 feet in size. The majority of the surface debris was located in the vicinity of TP-13, TP-14, and TP-15. Surface debris included plastic fragments, small pieces of metal, and glass/bottles.
- Test pitting identified buried debris/fill. The buried debris/fill area was approximately 40 feet by 16 feet (640 square feet in area) and extended to depths of approximately 3 4 feet bgs primarily at TP-13 and TP-15. The subsurface debris observed at TP-13 and TP-15 included asphalt shingle fragments, wood boards, small pieces of metal, brick, and glass/bottles. The debris was comingled with soil at depths ranging between 0.0 feet bgs to 3.5 feet bgs. The comingled soils are

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 7 of 9

characterized as well graded dark brown sands. Native material underlies the debris/fill layer, characterized to be well graded reddish-brown sand with gravel. Groundwater was observed to occur from approximately 2.75 feet to 4.25 feet below grade along the mixed debris test pit area. The percentage of debris in relation to the soil appeared to be approximately 5-8%. The overall volume of the debris and soil has been estimated to be between 71 and 95 cubic yards. The volume of debris within the soil approximately 4 - 8 cubic yards.

The laboratory analytical results indicated that metals (arsenic), PAHs, and pesticides are present in soils at concentrations that exceed applicable RSR criteria. Detections of metals such as arsenic and lead, and pesticides may be representative of the former agricultural use of the Site, and not associated with the debris observed in the dump area. Other metals such as barium, beryllium, cadmium, chromium, copper, mercury, nickel, vanadium, and zinc may be representative of naturally occurring metals in soil. PAHs detected in soils, some of which exceed applicable RSR criteria, may be representative of materials disposed of within the subject area, typical of residential trash burned and now decomposed.

It is EKIs understanding, based on meetings with the EHLT and CTDEEP representatives, that the mitigation objective to support a grant to purchase the Site would be the removal of the debris/fill. The "capping" of the land fill area and long-term monitoring is not a feasible alternative for the anticipated recreational use of the Site. Debris and impacted soil mitigation, by excavation and off-Site disposal to comply with the CTDEEP soil RES DEC and GA PMC would achieve compliance with the CTDEEP landfill regulations. Based on the discussions with the CTDEEP, and the data collected to date, the following course of action is recommended:

- Evaluate with CTDEEP if a landfill disruption authorization is needed. If the CTDEEP acknowledges
 that the volume of debris mixed in the soil is approximately 4 8 cubic yards, then it may be
 possible to proceed with the soil/debris removal without a landfill disruption authorization. If the
 CTDEEP acknowledges that the debris/soil disruption in its entirety exceeds 10 yards, then a
 landfill disruption authorization, which may take 4-6 months for CTDEEP approval, may be
 necessary.
- Excavate for off-Site disposal an estimated 71 95 cubic yards of mixed soil and debris. Based on the analytical data conducted, this material is anticipated to be disposed of as a Connecticut regulated, non-hazardous waste. Upon profile acceptance, the waste may be suitable for disposal at a facility such as the Plainville, Connecticut landfill or Clean Earth facility.
- Remove remaining surface debris from an approximately 5,120 square foot area, not included within the excavation area by hand picking and raking. Handle debris as solid waste for disposal.
- Conduct soil confirmation sampling of area for constituents of concern. Confirm the soil mitigation measures meet the appropriate CTDEEP RSR RES DEC and GA PMC standards. If necessary, evaluate background concentration outside of debris/fill area to establish clean up objectives.
- Prepare and submit a mitigation closure report to the CTDEEP.

For budgetary planning, the following cost estimates are provided:

• Communication and, if needed, preparation of a Landfill Disruption Authorization for submittal to CTDEEP: \$2,500 to \$6,500.

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 8 of 9

- Excavation and off-Site disposal of approximately 71 95 cubic yards (anticipated 99 133 tons) of Connecticut Regulated Waste: \$14,000 to \$19,000¹
- Surface debris mitigation and off-site disposal: \$1,500 to \$2,500
- Mitigation oversight, analytical testing, and reporting
 - Oversight and Reporting (assumes 3 field days): \$14,000
 - Analytical budget: \$5,100 (assumes 12 samples at a \$425 / sample average)

Area restoration

• Import and place approximately 95 yards of topsoil/loam materials, grade and seed: \$7,000

Estimated mitigation \$ 44,100 to \$54,100 ²

Timthi O. Mayab

Tim Myjak, LEP Project Manager

Should you have any questions, please feel free to contact Tim Myjak at 860-398-0070.

Very truly yours,

EKI ENVIRONMENT & WATER, INC.

Mathias Onyeali Geologist

<u>Figures</u> Figure 1: Site Location Map Figure 2: Site Plan Figure 3: Site Plan – 2019 Aerial Photograph Figure 4: Test Pit Investigation Plan

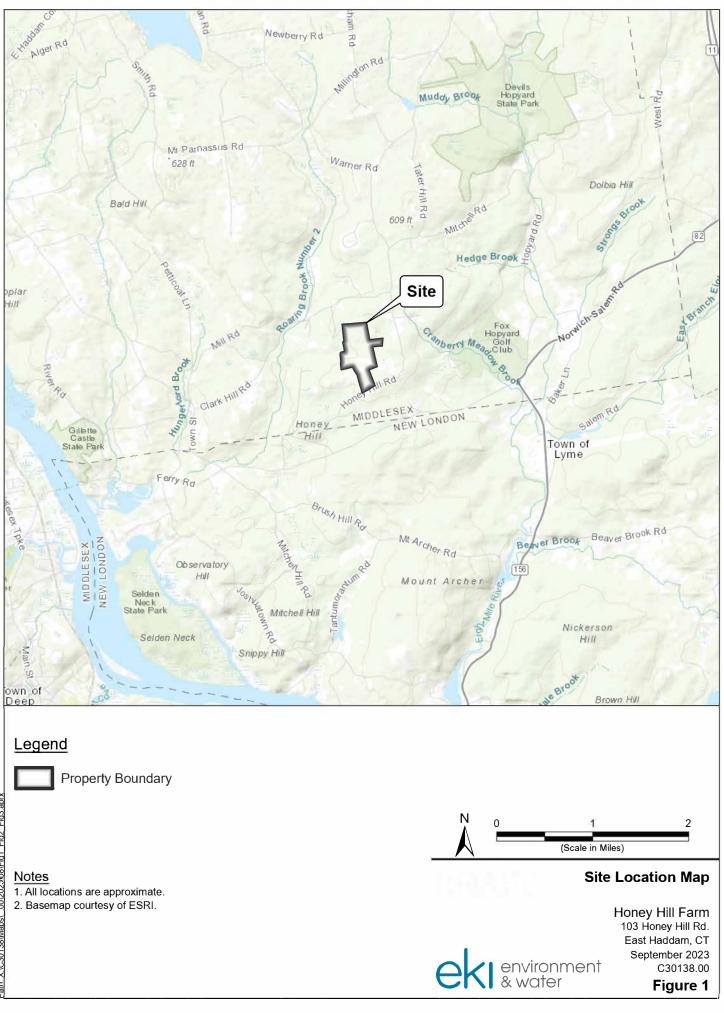
TableTable 1: Soil Analytical Result Summary

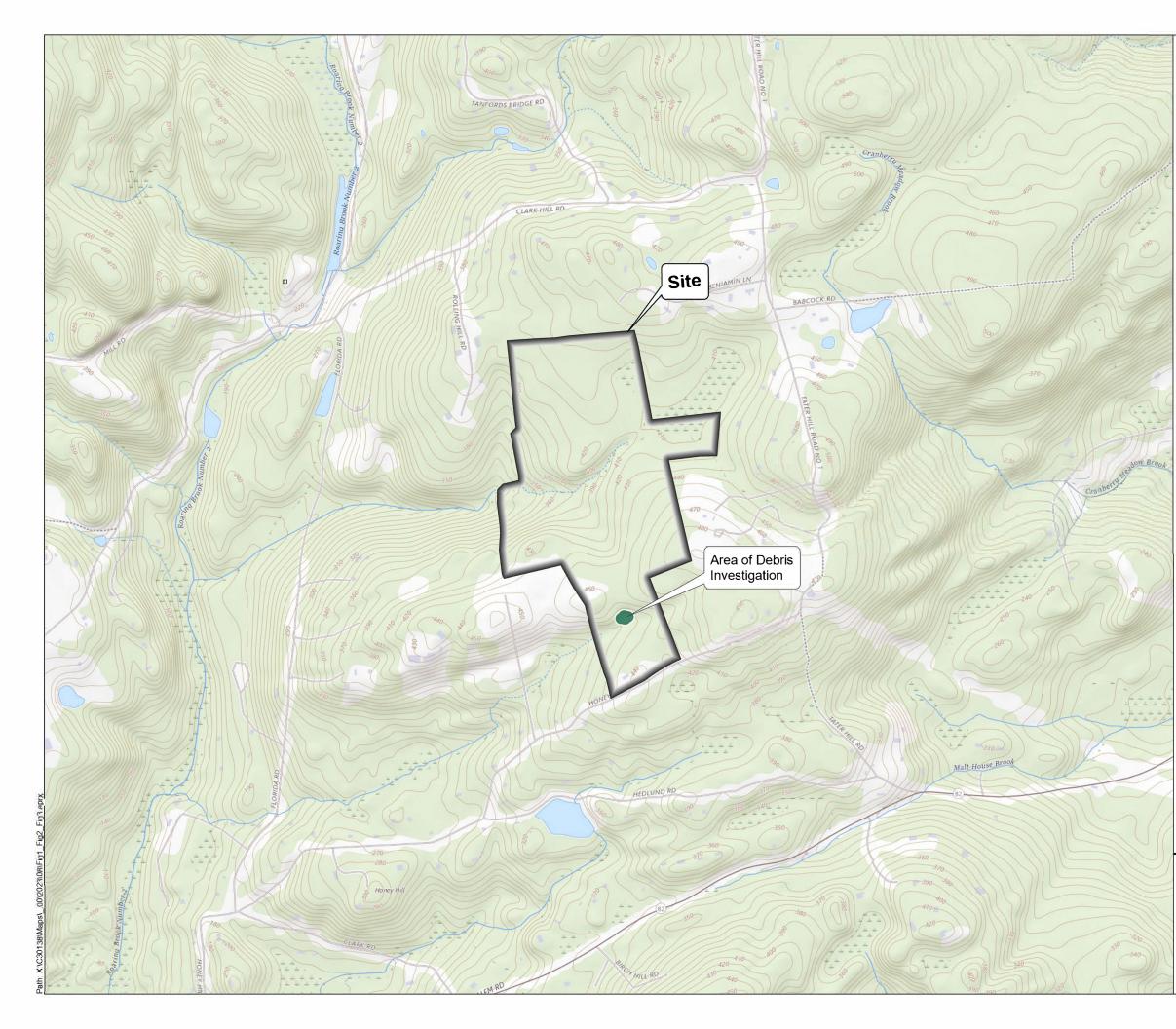
<u>Attachments</u> Attachment A: Affidavit Regarding Clean-Up of Dump Site

¹ TCLP metal laboratory analytical report pending. Assume material will be non-hazardous Connecticut Regulated Waste.

² Estimate does not include, if necessary, wetland permitting, approvals and/or sediment and erosion controls.

Mr. Beard Honey Hill Farm Acquisition East Haddam, Connecticut 19 September 2023 Page 9 of 9


Attachment B: Test Pit Logs Attachment C: Site Photographs – 25 August 2023 Attachment D: Laboratory Analytical Reports

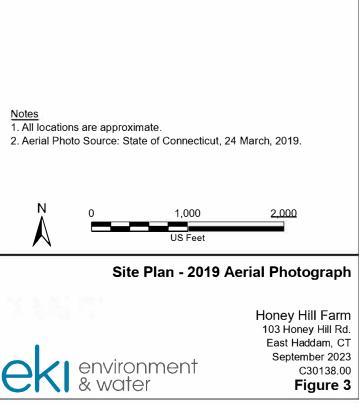

<u>References</u>

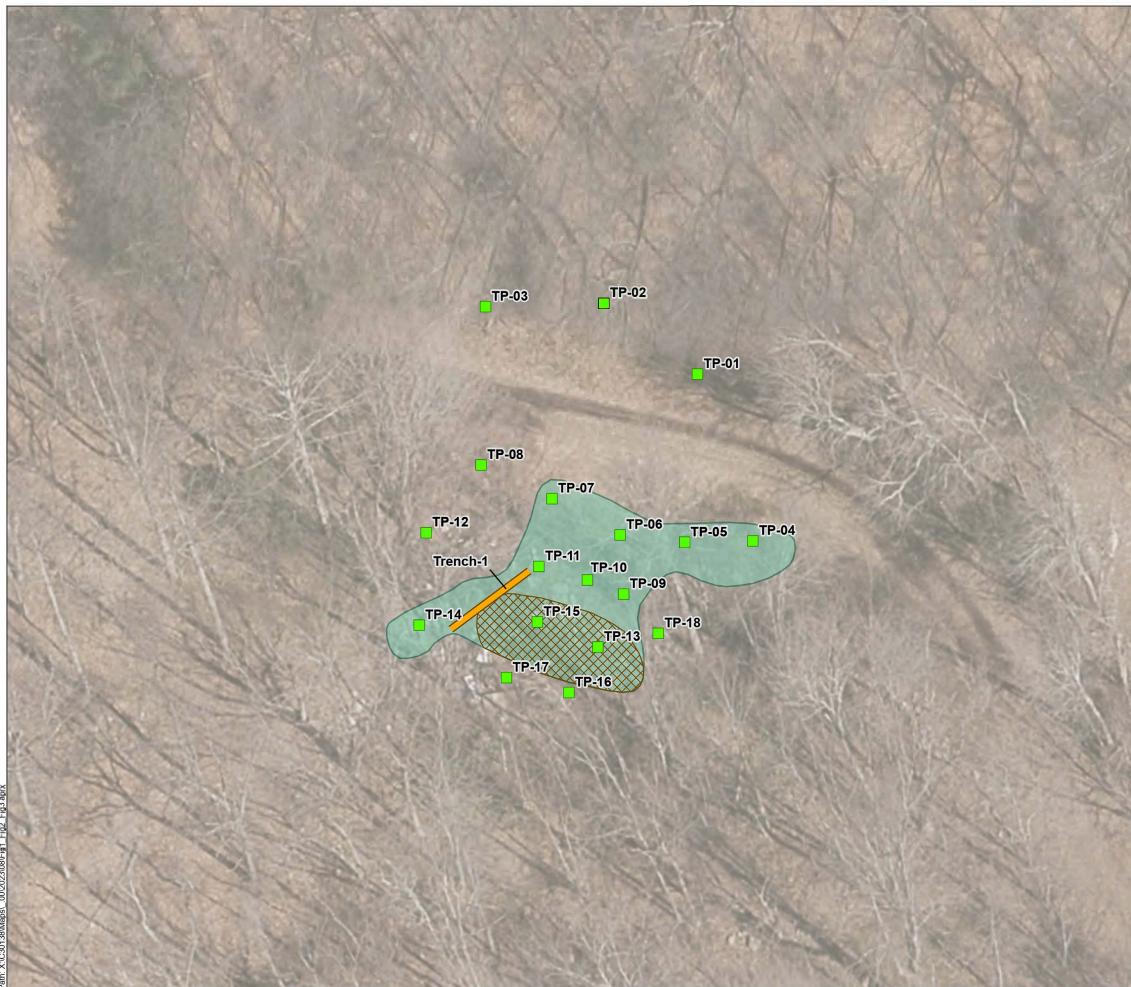
- CTDEEP, 2018. Water Classification for East Haddam, Connecticut, Connecticut Department of Energy and Environmental Protection, October 2018.
- CTDEEP, 2021. Connecticut Aquifer Protection Areas, Connecticut, Connecticut Department of Energy and Environmental Protection, 18 December 2021.
- CTDEEP, 2022. *Natural Diversity Data Base Areas, East Haddam*, Connecticut, Connecticut Department of Energy and Environmental Protection, June 2022.
- CTDEEP Aquifer Protection Area, online mapping database. Aquifer Protection Area Maps

EHLT, 2022. Affidavit Regarding Clean-up of Dump Site, East Haddam Land Trust, Inc., September 2022.

USGS, 2005. Quaternary Geologic Map of Connecticut and Long Island Sound Basin, Connecticut, 2005.

Legend


Property Boundary



Legend

Property Boundary

Legend

- Excavation Trench
 - Surficial Debris
- Debris / Fill Below Grade Surface

<u>Notes</u> 1. All locations are approximate. 2. Aerial Photo Source: State of Connecticut, 24 March, 2019.

environment & water

e

Test Pit Investigation Plan

Honey Hill Farm 103 Honey Hill Rd. East Haddam, CT September 2023 C30138.00 Figure 4

TABLE 1 Soil Analytical Summary Results Honey Hill Farm East Haddam, Connecticut

Sample ID and Sample Depth Sampling Date	CTDEEP RES	CTDEEP GA	TP-6(1-2) 8/25/2023	TP-13(2-3) 8/25/2023	TP-14(1-2) 8/25/2023	TP-15(2-3) 8/25/2023	TP-15(4-5) 8/25/2023
	DEC (c)(d)	PMC (e)(f)	9:40:00 AM	10:10:00 AM	10:20:00 AM	10:30:00 AM	10:35:00 AM
Total Metals via RSR Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	10	NE	6.9	16.9	12.1	37	16.9
Barium	4,700	NE	336	71	32.1	133	162
Beryllium	2	NE	0.45	1.24	0.55	< 0.66	< 0.55
Cadmium	34	NE	2.52	1.64	0.90	3.82	2.39
Chromium	NE	NE	33.4	72.1	38.3	38.1	27.1
Copper	2,500	NE	34.4	21.2	7.9	114	70.2
Lead	400	NE	51.7	41.8	7.98	282	280
Mercury	20	NE	<0.04	0.13	0.03	0.17	0.13
Nickel	1,400	NE	23.7	42.8	22.2	52.2	15.4
Vanadium	470	NE	35.1	59.4	37.2	240	25.6
Zinc	20,000	NE	152	92.3	36.3	1,010	640
PAH via 8270	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Benzo(a)anthracene	1,000	1,000	<360	700	< 300	<1,000	1,600
Benzo(a)pyrene	1,000	1,000	<360	880	< 300	<1,000	1,400
Benzo(b)fluoranthene	1,000	1,000	<360	1,800	< 300	1,100	3,500
Benzo(k)fluoranthene	8,400	1,000	<360	570	< 300	<1,000	1,200
Carbazole	31,000	200	< 200	270	< 200	< 200	430
Chrysene	84,000	1,000	<360	1,000	< 300	<1,000	2,600
Fluoranthene	1,000,000	5,600	<360	1,500	< 300	<1,200	2,600
Indeno(1,2,3-cd)pyrene	1,000	1,000	<360	540	< 300	<1,000	< 1,000
Pentachlorophenol	5,100	1,000	< 520	<850	< 430	<1,000	1,500
Phenanthrene	1,000,000	4,000	<360	820	< 300	<1,200	<1,200
Pyrene	1,000,000	4,000	<360	1,400	< 300	<1,200	4,000
Pesticides By SW8081B	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chlordane	490	66	NT	140	NT	150	NT
Dieldrin	38	7	NT	<2.9	NT	4.0	NT
PCBs By SW8082A (Soxhlet SW3540C)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PCB Aroclors	1	NE	NT	<0.720	NT	<0.790	<0.760
VOCs By SW8260D							
All VOCs	Varies	Varies	NT	<mdl< td=""><td>NT</td><td><mdl< td=""><td>NT</td></mdl<></td></mdl<>	NT	<mdl< td=""><td>NT</td></mdl<>	NT
ЕТРН Ву СТЕТРН	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ETPH	500	500	NT	<500	NT	<500	NT
Chlorinated Herbicides By SW8151A							
All Chlorinated Herbicides	Varies	Varies	NT	<mdl< td=""><td>NT</td><td><mdl< td=""><td>NT</td></mdl<></td></mdl<>	NT	<mdl< td=""><td>NT</td></mdl<>	NT

Abbreviations: NT = not tested

NE = Not Established

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

<"#"= compound not detected at or above indicated laboratory reporting limit

<MDL = Method detection limit

CTDEEP = Connecticut Department of Energy and Environmental Protection

ETPH = Extractable Total Petroleum Hydrocarbons

PAHs = Polycyclic aromatic hydrocarbons

PCBs = Polychlorinated biphenyls

RES DEC = Residential Direct Exposure Criteria

GA PMC = GA Pollutant Mobility Criteria

U.S. EPA = United States Environmental Protection Agency

VOCs = Volatile organic compounds

(a) Metals were analyzed by EPA Method 6010D and 7471B, PAHs were analyzed by U.S. EPA Method 8270D, VOCs were analyzed by U.S. EPA Method 8260D, ETPH was analyzed by CTETPH, PCBs were analyzed by U.S. EPA method 8082Å, Chlorinated Herbicides were analyzed by U.S. EPA Method 8151A, and Pesticides were analyzed by EPA methods 8081B. Samples analyzed by Phoenix Analytical Laboratories of Manchester, Connecticut. Sample results were reported on dry weight basis.

(b) Bold values indicates detected concentration. Bold and green highlighted value

indicates detected concentration exceeds its respective soil criteria.

(c) CTDEEP Remediation Standard Regulations (RSRs), Direct Exposure Criteria for Soil, Residential, Revised 3/9/2021.

(d) CTDEEP RSRs, Direct Exposure for Soil, Residential - Additional Polluting Substance Criteria, Revised 3/25/2022.

(e) CTDEEP RSRs, Pollutant Mobility Criteria for Soil, GA, Revised 3/9/2021

(f) CTDEEP RSRs, Pollutant Mobility Criteria for Soil, GA - Additional Polluting Substance Criteria, Revised 3/25/2022

EKI Environment & Water, Inc. September 2023

ATTACHMENT A

Affidavit Regarding Clean-Up of Dump Site

East Haddam Land Trust – Honey Hill Farm

APPENDIX BB

Affidavit Regarding Clean-Up of Dump Site

AFFIDAVIT

STATE OF CONNECTICUT

: ss Mardas

COUNTY OF MIDDLESEX

W. CAMERON BEARD, being duly sworn, deposes and says:

- I am a 1986 graduate of the University of Connecticut School of Law. I retired in good standing from legal practice in 2022. I submit this affidavit in support of the application of East Haddam Land Trust, Inc. (EHLT) to the Connecticut Department of Energy and Environmental Protection (DEEP) for funding under the Open Space and Watershed Land Acquisition (OSWA) program to assist with the acquisition of the open space portion (some 123 acres) of the 126-acre Honey Hill Farm property in southeastern East Haddam, CT.
- 2. I am currently a director and the Stewardship Chair of EHLT, and I was closely involved in the negotiation of EHLT's contract for the purchase of HHF, which lies adjacent to and just to the east of my own property on Honey Hill Road in East Haddam, CT, where I have resided for 28 years.
- 3. Relevant to the matters covered herein, I previously operated a small commercial vineyard, producing wine grapes for sale to local wineries. In that connection, I received Private Pesticide Applicator Certificates from the Connecticut Department of Energy & Environmental Protection, such certificates being issued after taking the required courses of study and examination on two occasions over a period of some ten years. Accordingly, I believe that I am reasonably well positioned to identify certain hazardous materials used in agricultural contexts.

- 4. In the course of site visits to HHF in 2021, prior to the execution of a purchase contract, I noted the existence of a dump on the property. The location of that dump is reflected on the maps annexed hereto as Exhibit A. I estimated the size of the dump at the time to be some 60 feet by 40 feet wide, with a depth that was unknown but assumed to be anywhere from one to four feet. Subsequent measurements have generally confirmed those initial estimates.
- 5. It was informally agreed with the sellers of HHF that EHLT would be permitted, after signature of the contract of sale but before closing, to clean up the dump site at EHLT's expense.
- 6. The contract of sale for HHF was signed on August 1, 2022. We began clean-up of the dump site almost immediately, with initial work being done to clear brush and fallen limbs to allow for rubbish removal. I personally directed and was closely involved in the clean-up exercise, pictures of which are annexed hereto as **Exhibit B**. Videos were also taken during the clean-up and can be made available on request.
- 7. As reflected in Exhibit A, the dump site lies just to the south of a farm road. That farm road had clearly been the route used in the past by persons dumping rubbish. The dump site is also transected at an angle by an old stone wall. The rubbish encountered during the cleanup process was less deep (perhaps one foot) in the area to the north of the stone wall and closest to the farm road. The rubbish was somewhat deeper (perhaps three feet) on the south side of the stone wall, where the ground is lower than that next to the farm road, and where most older rubbish appeared to have been deposited.
- 8. The materials encountered during the clean-up process were of two types and were found at different levels during excavation. Close to the surface were items of household furniture and appliances, as well as household trash. We were surprised to find that some of these household materials were of relatively recent origin (10-30 years) but, because the rubbish in fact derived mostly from a private residence or residences, we were equally relieved to find little to no evidence of toxic materials in this layer. The

second layer, lying beneath the first, comprised older materials, including old farm implements, scrap metal, and the remains of an ancient barn that had apparently been demolished at some point in the past. We found little to no evidence of toxic materials in that layer either.

- 9. The clean-up process was conducted both by hand by the undersigned and with the assistance of neighbor who, using a large excavator, cleared and repeatedly excavated and churned the site to allow for access to the maximum amount of rubbish in the different layers encountered. Using this process, we filled a thirty-yard dumpster with 3.06 tons of non-metal rubbish. That dumpster was thereafter removed by a professional dumpster service. We also filled two smaller dumpsters with 3.11 tons of scrap metal, which was sold to a scrap metal dealer. Included in the scrap metal were several very old metal drums; however, they contained nothing, and I saw no evidence that they had contained toxic materials. Moreover, I have no reason to believe that HHF, on which no farming activity has been conducted for many decades, engaged in farming of a kind that would have involved the use of toxic materials or pesticides.
- 10. Also removed from the site and taken directly to the East Haddam Transfer Station for proper processing were: five television sets/computer monitors (the screens on none of which were broken), some twenty tires, and nine car or tractor batteries, several of which were compromised but others of which were intact. The car batteries were the only items I saw during the clean-up process that I considered potentially toxic, but they were few in number, they have been removed, and we are reasonably confident that no others are present.
- 11.Regrettably, we discovered that someone had dumped asphalt shingles from a roofing job at the site. We used best efforts to remove as much of that material as we practicably could do; however, many shingles had begun to degrade into dust or very small pieces, such that some small quantity of asphalt is likely still on site.
- 12. We did not make an effort to remove the wooden remnants of the ancient barn referenced above, as most of the wood was in an advanced state of decay and did not seem to present any environmental risk. We saw no

evidence of paint on the barn wood, and we therefore assume that either the barn was never painted or that the structure was demolished so long ago that all traces of paint had disappeared as the wood degraded underground. I estimate that we were successful in removing some 95% of all materials other than barn wood from the site.

13. In sum, we used best and substantial efforts to clean up the above-described dumping area, and I do not believe that the site currently represents an environmental hazard.

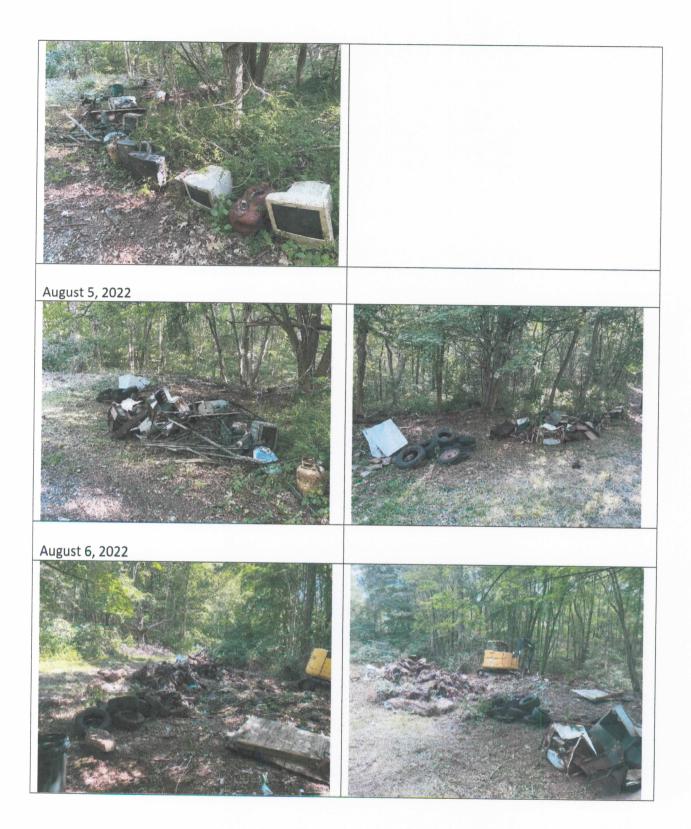
W. Cameron Beard

Sworn to before me this <u>for</u> day of August 2022 *September 2022*

otary P

BEVERLY R. CHRISTOPHER NOTARY PUBLIC My Commission Expires 10/31/2027

Exhibit A


★ Location of Farm Dump


Dump Perimeter


Exhibit **B**

ATTACHMENT B

Test Pit Logs

e		nvironment water	<u>Test Pit ID</u> :	7	[P-1	
Jol Loc Tot Te:	oject: b No: cation: tal Depth: st Pit Width	3 ft bgs	Excavator Co:SikorskyGround SurfaceExcavator Method: Test Pit ExcavationElevation Daturt Haddam, CT Excavator Rig:E80 BobcatNorthing (N):Operator:Ray SikorskyEasting (E):Logged By:Mathias OnyealiDate(s):Reviewed By:Tim MyjakTime:(initial when complete)Remarks:	n: NAD 1 110397 71992 8/25/2 07:40	983, StateF '0.30883 1.968928 023	Plane CT, Ft
Depth (ft bgs)	OVM	Sample ID	Material Description		Strati-	Water ⁴ Depth ^{Depth}
0	(ppm)		and Observations SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; brush, long grass, leaves, some mositure	USCS ML	graphy	0
-	0.0	-	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to fine-grained sand; 20% coarse to fine gravel; 10% silt; loose, some moisture	SW		-
—1	0.0	1-				1–
-	0.0	-				-
-2	0.0	2-				2-
-	0.0	-				-
3	0.0 General Not	3	End of Test Pi to the approximate elevation it was excavated from.	t		3

e	k	environment & water		Test Pit ID:	7	ГР-2	
Jo Lo To Te	oject: b No: cation: tal Depth st Pit Wie	Honey Hill Farm C30138.00 103 Honey Hill Road, East 1: 3 ft bgs dth: ~4 ft	Excavator Co: Sikorsky Excavator Method: Test Pit Excavation Haddam , CTExcavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: (initial when complete) Remarks:	Ground Surface Elevation Datum Northing (N): Easting (E): Date(s): Time:	1: NAD 1 110395	983, State 50.83151 6.788124 2023	
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations		USCS	Strati- graphy	Water ^(tt pds) Depth 0
0		0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-gr clay; brush, long grass, leaves, some mositure		ML		0
	0.0	_	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coa fine-grained sand; 20% coarse to fine gravel; 10% silt; loos	arse to e, some moisture	SW		
	0.0						
-1	0.0	1–					1-
-	0.0	TP-2(1-2 ft) -					_
-2	0.0	2-					2-
-	0.0	TP-2(2-3 ft) -					-
3	0.0	3		End of Test Pit			3
<u> </u>	<u>Seneral N</u>	Notes: Soil backfilled	to the approximate elevation it was excavated fr	om.			

e		nvironment water	<u>Test Pit ID</u> :	٦	FP-3	
Jol Loc Tot Te:	oject: b No: cation: tal Depth: st Pit Width	3 ft bgs	Excavator Co: Sikorsky Excavator Method: Test Pit Excavation t Haddam , CT Excavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: (initial when complete) Remarks: Bikorsky Tim Myjak Ground Surfact Elevation Datu Northing (N): Easting (E): Date(s): Time:	m: NAD 19 110392 719936 8/25/2 07:50	983, StateF 6.14783 6.006301 023	Plane CT, Ft
Depth (ft bgs)	OVM	Sample ID	Material Description		Strati-	Water Depth
0	(ppm)		and Observations SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; brush, long grass, leaves, some mositure	USCS ML	graphy	0
-	0.0	-	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to fine-grained sand; 20% coarse to fine gravel; 10% silt; loose, some moisture	SW		-
—1	0.0	1-				1–
-	0.0	-				-
-2	0.0	2-				2-
-	0.0	-				-
3	0.0 General Not	3	End of Test P to the approximate elevation it was excavated from.	it		3

Project: Job No: Location:	Honey Hill Farm C30138.00				
Total Depth Test Pit Wi	103 Honey Hill Road, East h: 3 ft bgs	Excavator Co: Sikorsky Excavator Method: Test Pit Excavation Haddam , CT Excavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: Tim Myjak (initial when complete) Remarks:	Ground Surface Elevation Datum Northing (N): Easting (E): Date(s): Time:	Elevation (ft): Not NAD 1983, StatePl 1103981.82751 719887.233433 8/25/2023 07:55	Measured ane CT, Ft
MAO Depth (ft bgs) (bdd)	Sample ID	Material Description and Observations		Strati- V USCS graphy D	Vater ^(tt pds)
0	0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-g clay; long grass, leaves, some mositure, minor surficial det bottles, and glass	rained sand; 5% oris plastic,	ML	0
- 0.0	-	POORLY GRADED GRAVEL;dark yellowish brown (10YR to fine-grained gravel; 35% coarse to fine-grained sand; 59	4/6); 60% coarse 6 silt; loose, dry	GP .0.00	-
-1 0.0	1–				1-
- 0.0	TP-4(1-2 ft) -				_
-2 0.0	2-				2-
- 0.0	TP-4(2-3 ft) -				-
3 0.0 General I	3	o the approximate elevation it was excavated fr	End of Test Pit	· <u>·</u> · · · · ·	3

e	k	environment & water	<u>Test Pit ID</u> :	-	ГР-5	
Jol Lo To	oject: b No: cation: tal Dept st Pit W	Honey Hill Farm C30138.00 103 Honey Hill Road, Eas h: 3 ft bgs 'idth: ~4 ft	Excavator Co: Sikorsky Excavator Method: Test Pit Excavation Haddam , CT Excavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: (initial when complete) Remarks: Bikorsky Ground Surface Elevation Datun Northing (N): Easting (E): Date(s): Tim Myjak Time:	n: NAD 1 110396	983, Statel 57.63659 7.012305 2023	
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description		Strati-	Water ^{4 (sga} Depth ⁰
0	(ppm)	0	and Observations SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; long grass, leaves, some mositure, minor surficial debris plastic, bottles, and glass	USCS ML		
		-	POORLY GRADED GRAVEL; dark yellowish brown (10YR 4/6); 60% coarse to fine-grained gravel; 35% coarse to fine-grained sand; 5% silt; loose, some mositure	GP		
_	0.0	-				
					0 0 0 0 0 0 0 0 0	
-1	0.0	1-				1-
-	0.0	-				
-2	0.0	2-				2-
-	0.0	-				- - - - -
3	0.0	3	End of Test Pit			3
<u> </u>	<u>General</u>	Notes: Soil backfilled	to the approximate elevation it was excavated from.			

e	k	environment & water	<u>Test Pit ID</u> :	7	ГР-6	
Jo Lo To Te	oject: b No: cation: tal Depth st Pit Wi		Excavator Co: Sikorsky Ground Surface Excavator Method: Test Pit Excavation Elevation Datum t Haddam, CT Excavator Rig: E80 Bobcat Northing (N): Operator: Ray Sikorsky Easting (E): Logged By: Mathias Onyeali Date(s): Reviewed By: Tim Myjak Time: (initial when complete) Remarks: Final Action	1: NAD 1 110395	983, StateF 54.17238 8.49032 2023	ot Measured Plane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations	USCS	Strati- graphy	Water Depth Depth
0		0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; long grass, leaves, some mositure, minor surficial debris plastic, bottles, and glass POORLY GRADED GRAVEL;dark yellowish brown (10YR 4/6); 60% coarse	GP	.00.	0
-	0.0	-	to fine-grained gravel; 35% coarse to fine-grained sand; 5% silt; loose, some mositure			. –
-1	0.0	1-				1-
-	0.0	TP-6(1-2 ft) -				- -
-2	0.0	2-				2-
=	0.0	TP-6(2-3 ft) -				
3	0.0 General N	3	End of Test Pit to the approximate elevation it was excavated from.		0.00	3

e	k	environment & water	<u>Test P</u>	<u>it ID</u> :	٦	[P-7	
Jol Lo To	oject: b No: cation: tal Dept st Pit W			on Datum ng (N): g (E):	1: NAD 19 110393	983, Statel 9.98278 6.028691 023	ot Measured Plane CT, Ft
Depth (ft bgs)	OVM	Sampla ID	Material Description			Strati-	Water ^{4t deg}
O U U U U	(ppm)	Sample ID 0	and Observations SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sar clay; long grass, leaves, some mositure, minor surficial debris plastic bottles, and glass	nd; 5% c,	USCS ML	graphy	Depth 으 ੁ 0
		-	POORLY GRADED GRAVEL;dark yellowish brown (10YR 4/6); 60% to fine-grained gravel; 35% coarse to fine-grained sand; 5% silt; loos mositure	se,some	GP		L • • • •
-	0.0	-					
-1	0.0	1-					1-
_	0.0	-					- - - - - - - - - - - - - - - - -
-2	0.0	2-					2-
_	0.0	-					
3	0.0	3	End	of Test Pit		· · · · · · · · · · · · · · · · · · ·	. 3
	Seneral		to the approximate elevation it was excavated from.			<u> </u>	<u> </u>

Test Pit ID:

TP-8

Jo Lo To	oject: b No: cation: tal Depth: st Pit Wid	: 4 ft bgs	Excavator Co:Sikorsky Excavator Method: Test Pit ExcavationGround Surface Elevation (ft):NotHaddam , CT Excavator Rig:E80 Bobcat Operator:NAD 1983, StatePla Northing (N):1103925.28235Logged By:Mathias OnyealiDate(s):719903.117916Reviewed By: (initial when complete)Tim MyjakTime:08:15	Measured ane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description Strati- V and Observations USCS graphy D SANDY SILT: dark brown (10YR 3/3): 75% silt, 20% fine-grained sand: 5% ML I	Vater ^{Lebth} Depth Depth
0		0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% ML clay; long grass, leaves, some mositure	0
-	0.0	-	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to fine-grained sand; 20% coarse to fine gravel; 10% silt; loose, some moisture, wet @ 3.5 feet bgs	_
—1	0.0	1 –		1-
-	0.0	TP-8(1-2 ft) -		_
-2	0.0	2-		2-
-	0.0	TP-8(3-4 ft) −		-
-3	0.0	3–		3-
-		-		-
_4		4	End of Test Pit	∇ 4
	<u>Seneral N</u>	otes: Soil backfilled	o the approximate elevation it was excavated from.	

environment & water

-1 0.0	e	kı	environment & water	<u>Test Pit ID</u> :	-	ГР-9	
0	Jol Lov To Te	b No: cation: tal Depth	C30138.00 103 Honey Hill Road, Easi h: 3 ft bgs	Excavator Method: Test Pit Excavation Elevation Datur Haddam, CT Excavator Rig: E80 Bobcat Northing (N): Operator: Ray Sikorsky Easting (E): Logged By: Mathias Onyeali Date(s): Reviewed By: Tim Myjak Time:	n: NAD 1 11039 71987 8/25/2	983, Statel 54.91516 6.154059 2023	
0	Depth ft bgs)		Sample ID			Strati-	Water Used
-1 0.0 -1 -1 0.0 1 -1 0.0 1 -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -2 0.0 - -3 - - -4 - - -5 - - -6 - - -7 0.0 - -7 0.0 - -7 0.0 - -7 - - -7 - - -7 - - -7 - - -7 - - -7 - -		(ppm)		SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; long grass, leaves, some mositure, minor surficial debris plastic,	ML		
			-	to fine-grained gravel; 35% coarse to fine-grained sand; 5% silt; loose,	GP		
- 0.0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	0.0	-				
- 2 0.0 2- - 2 0.0 2- - 0.0 - 0.0 - 0.0 	—1	0.0	1-				1-
- 2 0.0 2- - 2 0.0 2- - 0.0 - 0.0 - 0.0 							
-2 0.0 2- 1000000000000000000000000000000000000	-	0.0	-				- - - - - - - - - - - - - - - - - - -
End of Test Pit	-2	0.0	2-				2-
3 0.0 3 End of Test Pit 0.0 3	-	0.0	-				- - - - - - -
3 0.0 3 End of Test Pit						0.0.0.0 0.0.00 0.0.00 0.00 0.00 0.00 0	
	3	0.0	3	End of Test Pi	t	0.0	3

0.0 <i>TP-10(1-2 ft)</i>	e		environment & water	Tes	st Pit ID:	-	ГР-10	
-1 0.0	Jo Lo To	b No: cation: tal Depth:	C30138.00 103 Honey Hill Road, East 3 ft bgs	Excavator Method: Test Pit Excavation Elevent Haddam, CT Excavator Rig: E80 Bobcat Nor Operator: Ray Sikorsky Eas Logged By: Mathias Onyeali Dat Reviewed By: Tim Myjak Tim	vation Datum rthing (N): sting (E): te(s): ne:	110394 110394 71987 8/25/2 08:25	983, State 17.3781 9.109105 2023	Plane CT, Ft
-1 0.0	Jepth (ft bgs)		Sample ID			110.00	Strati-	Water Qebth
-1 0.0 1 -1 0.0 1 -1 0.0 1 -1 0.0 1 -1 0.0 1 -1 0.0 1 -1 0.0 1 -1 0.0 1 -2 0.0 TP-10(1-2 ft) -2 0.0 TP-10(2-3 ft) -3 0.0 3		(ppm)	-	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained	d sand; 5%	ML		
-2 0.0 TP-10(1-2 ft) - -2 0.0 2- - 0.0 TP-10(2-3 ft) - - 100 TP-1	-	0.0	-	to fine-grained gravel; 35% coarse to fine-grained sand; 5% silt;	60% coarse loose,	GP		
- 2 0.0 TP-10(1-2 ft) - - 2 0.0 2- 0.0 TP-10(2-3 ft) - 3 0.0 3 3 End of Test Plt 0 0 3	-1	0.0	1–					1–
- 0.0 TP-10(2-3 ft) -	-	0.0	TP-10(1-2 ft) -					
3 0.0 3 End of Test Pit 0.00 3	-2	0.0	2–					2-
	-	0.0	TP-10(2-3 ft) -					
							0.0	: 3

e		nvironment water	<u>Test Pit ID</u> :	-	ГР-11	
Jol Loc Tot Te:	oject: b No: cation: tal Depth: st Pit Widtl	3 ft bgs	Excavator Co:SikorskyGround SurfaExcavator Method: Test Pit ExcavationElevation Datt Haddam , CT Excavator Rig:E80 BobcatNorthing (N):Operator:Ray SikorskyEasting (E):Logged By:Mathias OnyealiDate(s):Reviewed By:Tim MyjakTime:(initial when complete)Remarks:Time:	um: NAD 1 110393	983, State 37.25804 1.921108 2023	
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations	USCS	Strati-	Water ^{4 defp} Depth 0
0		0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; long grass, leaves, some mositure, minor surficial debris plastic, bottles, and glass	03C3ML		0
		-	POORLY GRADED GRAVEL; dark yellowish brown (10YR 4/6); 60% coarse to fine-grained gravel; 35% coarse to fine-grained sand; 5% silt; loose, some mositure	e GP		
-	0.0	-				
—1	0.0	1-				- - - - - - - - - - - - - - - - - - -
_	0.0	-				•
-2	0.0	2-				2-
_	0.0	-				
1 1	0.0	3	End of Test	Pit	0.00	3

e	K er &	nvironment water	<u>Test Pit II</u>	<u>)</u> : -	ГР-12	
Job Loc Tota	oject: o No: cation: cal Depth: st Pit Width	3 ft bgs	Excavator Co: Sikorsky Excavator Method: Test Pit Excavation Elevation E Northing (T Coperator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: Tim Myjak Cinitial when complete) Remarks:	rface Elevatic Datum: NAD 1 I): 11039 : 71988 8/25/2 08:35	983, State 3.84995 8.987038 023	lot Measured Plane CT, Ft
Depth (ft bgs)	OVM	Sample ID	Material Description		Strati-	Water ^{4 (sold party constraint)}
0 U	(ppm)	0	and Observations SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5 clay; long grass, leaves, some mositure	WSCS ML	graphy	Depth [□] [⊆] 0
		-	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to fine-grained sand; 20% coarse to fine gravel; 10% silt; loose, some moist	ure SW		
-	0.0	-				
-1	0.0	1–				1-
-	0.0	TP-12(1-2 ft) -				-
-2	0.0	2-				2-
-	0.0	TP-12(2-3 ft) -				
3	0.0	3	End of Treason to the approximate elevation it was excavated from.	est Pit		3

Test Pit ID:

TP-13

Jo Lo To	oject: b No: cation: tal Depth: est Pit Wid	5 ft bgs	Excavator Co:SikorskyGround Surface IExcavator Method: Test Pit ExcavationElevation Datum:Haddam , CT Excavator Rig:E80 BobcatNorthing (N):Operator:Ray SikorskyEasting (E):Logged By:Mathias OnyealiDate(s):Reviewed By:Tim MyjakTime:(initial when complete)Remarks:	NAD 1 110394	983, Statel 49.54247 5.161955 2023	
Depth (ft bgs)	OVM (ppm)	Sample ID		USCS	Strati- graphy	Water ^{(soft dag} Depth ^{(cont})
0			SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% slay; long grass, leaves, some mositure, mixed in debris plastic, bottles, netal, and glass.			0
-	0.0	: - -	WELL-GRADED SAND; dark brown (10YR 3/3); 60% coarse to fine-grained sand; 10% coarse to fine gravel; 10% silt; Solid waste fill > 20% of material observed; black asphalt roofing material, brown rubber material, metal stakes, sheet metal, plastics, glass bottles, brick, loose, dry, no odor loose, some moisture	SW		_
-1	0.0	1–				1–
-	0.0	_				_
-2	0.0	BULK-1 2–				2-
-	0.0	TP-13(2-3 ft) -				-
—3	0.0	BULK-2 3–				3-
_	0.0		WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to ine-grained sand; 20% coarse to fine gravel; 10% silt; loose, wet	SW		
<u> </u>	0.0	4 –				4- V
-	0.0	TP-13(4-5 ft) -				-
-5	0.0	5	End of Test Pit			5-
<u> </u>	General No	otes: Soil backfilled to	the approximate elevation it was excavated from.			

environment & water

e		environment water	<u>Test Pit ID</u> :	•	TP-14	
Jol Loc To Te	oject: b No: cation: tal Depth: st Pit Widt	3 ft bgs	Excavator Co: Sikorsky Excavator Method: Test Pit Excavation t Haddam , CT Excavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: (initial when complete) Remarks: Bikorsky Cround Surface Elevation Datur Northing (N): Easting (E): Date(s): Time:	n: NAD 1 11039 71986 8/25/2 08:45	983, State 12.32568 9.703284 2023	Plane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations	USCS	Strati-	Water ^{4td} Depth 0
0		0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; long grass, leaves, some mositure, debris plastic, bottles, metal, and glass.	ML		0
		-	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to fine-grained sand; 20% coarse to fine gravel; 10% silt; loose, some moisture	SW		
_	0.0	-				
—1	0.0	1–				1-
_	0.0	TP-14(1-2 ft) -				
-2	0.0	2-				2.
_	0.0	TP-14(2-3 ft) -				
3	0.0	3	End of Test Pit			3
	General No		to the approximate elevation it was excavated from.	1		

Test Pit ID:

TP-15

Jol Loc Tot	oject: o No: cation: tal Depth: st Pit Wid	5 ft bgs	Excavator Co:SikorskyGround SurfaceExcavator Method: Test Pit ExcavationElevation DatumHaddam , CT Excavator Rig:E80 BobcatNorthing (N):Operator:Ray SikorskyEasting (E):Logged By:Mathias OnyealiDate(s):Reviewed By:Tim MyjakTime:	: NAD 1 110393 71987 8/25/2 08:50	983, StatePl 36.94833 0.359779 2023	lane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations	USCS	Strati- \ graphy [Water ^{qtebth} Depth 0
0		0	SANDY SILT; dark brown (10YR 3/3); 75% silt, 20% fine-grained sand; 5% clay; long grass, leaves, some mositure, mixed in debris plastic, bottles, metal, and glass.			0
_	0.0	-	WELL-GRADED SAND; dark brown (10YR 3/3); 60% coarse to fine-grained sand; 10% coarse to fine gravel; 10% silt; Solid waste fill > 20% of material observed; black asphalt roofing material, brown rubber material, metal stakes, sheet metal, plastics, glass bottles, brick, loose, dry, no odor loose, some moisture	SW		-
—1	0.0	1–				1-
-	0.0	-				_
—2	0.0	BULK-3 2–				2-
-	0.0	TP-15(2-3 ft) -				-
—3	0.0	3-				3-
-	0.0	-	WELL-GRADED SAND; reddish brown (5YR 4/4); 70% coarse to fine-grained sand; 20% coarse to fine gravel; 10% silt; loose, wet	SW		_
—4	0.0	4				4- ▽
-	0.0	TP-15(4-5 ft) -				-
—5	0.0	5 -	End of Test Pit			5-
G	eneral N	otes: Soil backfilled	o the approximate elevation it was excavated from.			

environment & water

e	kı	environment & water	<u>Test Pit</u>	<u>ID</u> :	TP-16	
Jo Lo To Te	oject: b No: cation: tal Depti est Pit Wi		Excavator Co: Sikorsky Excavator Method: Test Pit Excavation Haddam , CT Excavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: (initial when complete) Remarks: Ground S Elevation Northing Easting (Date(s): Time:	Datum : NA (N): 11 E): 71 8/	vation (ft): No AD 1983, StateF 03943.5205 19855.685268 /25/2023 18:55	ot Measured Plane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations	US	Strati-	Water Depth (It pds)
0	41 ⁷	0	WELL-GRADED SAND; dark brown (10YR 3/3); 70% coarse to fine-gr sand; 20% coarse to fine gravel; 10% silt; loose, moist, wet @ 2.75 fee	ained S	W	0
_	0.0	-				-
-1	0.0	1-				1–
-	0.0	TP-16(1-2 ft) -				-
-2	0.0	2-				2-
-	0.0	TP-16(2-3 ft) -				▽
3	0.0	3		Test Pit		3
<u> </u>	General	Notes: Soil backfilled	to the approximate elevation it was excavated from.			

<u>General Notes:</u> Soil backfilled to the approximate elevation it was excavated fi	ron
--	-----

e	kı	environment & water	<u>Test Pit II</u>	<u>)</u> :	TP-17	
Jo Lo To	oject: b No: cation: tal Deptl st Pit Wi		Excavator Co: Sikorsky Excavator Method: Test Pit Excavation Elevation E Haddam , CT Excavator Rig: E80 Bobcat Operator: Ray Sikorsky Logged By: Mathias Onyeali Reviewed By: (initial when complete) Remarks:	rface Elevatio Datum: NAD 1 I): 11039 : 71985 8/25/3 09:00	983, StateF 30.5156 58.779094 2023	ot Measured Plane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations	USCS	Strati- graphy	Water ⁴ Depth ⁰
0		0	WELL-GRADED SAND; dark brown (10YR 3/3); 70% coarse to fine-grain sand; 20% coarse to fine gravel; 10% silt; loose, moist, wet @ 2.75 feet b	ed SW	<u></u> J	0
-	0.0	-				-
-1	0.0	1-				1-
-	0.0	TP-17(1-2 ft) -				-
-2	0.0	2-				2-
-	0.0	TP-17(2-3 ft) -				▽
3	0.0	3	End of Te	est Pit		3
<u> </u>	<u>General I</u>	Notes: Soil backfilled	to the approximate elevation it was excavated from.			

<u>ieneral Notes:</u>	Soil backfilled to	the approximate e	levation i	t was excavated f	fron
-----------------------	--------------------	-------------------	------------	-------------------	------

	× 1 ∧	nvironment water		<u>Test Pit ID</u> :	TP-18	
Job Loc Tot Tes	oject: o No: cation: al Depth: st Pit Widt	3 ft bgs	Excavator Co:SikorskyExcavator Method: Test Pit ExcavationHaddam , CT Excavator Rig:E80 BobcatOperator:Ray SikorskyLogged By:Mathias OnyealiReviewed By:Tim Myjak(initial when complete)Remarks:	Ground Surface Elevation Datum Northing (N): Easting (E): Date(s): Time:	 NAD 1983, State 1103962.12775 719868.00086 8/25/2023 10:00 	Plane CT, Ft
Depth (ft bgs)	OVM (ppm)	Sample ID	Material Description and Observations		Strati- USCS graphy	Water ^{4 bdb} Depth 0
0	<u>45.6.13</u>	0	WELL-GRADED SAND; dark brown (10YR 3/3); 70% coa sand; 20% coarse to fine gravel; 10% silt; loose, loose, m bgs	rse to fine-grained oist, wet @ 3 feet	SW SW	0
-	0.0	-				
-1	0.0	1–				1-
-	0.0	TP-18(1-2 ft) -				
-2	0.0	2-				2-
_	0.0	TP-18(2-3 ft) -				
3	0.0	3		End of Test Pit		

ATTACHMENT C

Site Photographs – 25 August 2023

APPENDIX B SELECTED PHOTOGRAPHS OF THE HONEY HILL FARM TEST PIT INVESTIGATION 25 August 2023

Photo 1: Area of Investigation, looking southwest.

Photo 3: Test Pit TP-05 south of the access road, native coarse to fine gravelly native material, looking southwest.

Photo 2: Test Pit TP-02 along eastern side of investigation area, native material, looking west.

Photo 5: Test Pit TP-15 containing fill material including black asphalt roofing material, sheet metal, plastics, glass bottles, brick.

Photo 4: Test Pit TP-13 containing fill material including black asphalt roofing material, brown rubber material, sheet metal, plastics, glass bottles, brick.

Photo 6: Black asphalt roofing material from Test Pit TP-13.

ATTACHMENT D

Laboratory Analytical Reports

Tuesday, September 05, 2023

Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

Project ID:C30138 HONEY HILL (C3-210)SDG ID:GCO83148Sample ID#s:CO83148 - CO83150

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

September 05, 2023

SDG I.D.: GCO83148

Project ID: C30138 HONEY HILL (C3-210)

Client Id	Lab Id	Matrix	
BULK-1 (BLACK ASPHALT SHINGLES)	CO83148	BULK	
BULK-2 (BROWN MATERIAL)	CO83149	BULK	
BULK-3 (BLACK ASPHALT SHINGLES)	CO83150	BULK	

Analysis Septemb	Report ber 05, 2023	FOR:	Attn: Tim Myjak EKI Environmental 8 80 Eastern Blvd. Sui Glastonbury, CT 060	ite 5	
Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	BULK	Collected by:		08/25/23	10:10
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138	Laboratory	<u>Data</u>	SDG ID: Phoenix ID:	GCO83148 CO83148
Project ID:	C30138 HONEY HILL (C3-210)			

Client ID: BULK-1 (BLACK ASPHALT SHINGLES)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Asbestos	ND		%		09/01/23	*	NYSDOH 198.1 PLM	С

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Asbestos (NYSDOH 198.1 PLM) was analyzed by CT certified lab #PH-0622.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 05, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Septen	Report nber 05, 2023	FOR		Attn: Tim Myjak EKI Environment 80 Eastern Blvd. Glastonbury, CT	Suite 5	с	
Sample Inform	nation	Custody Info	ormat	ion	Date	<u>e</u>	Time
Matrix:	BULK	Collected by:			08/2	5/23	10:11
Location Code:	EKI	Received by:		SR1	08/2	5/23	13:43
Rush Request:	Standard	Analyzed by:		see "By" below			
P.O.#:	C3-210 C30138	Laborator	ry C	<u>Data</u>	-	-	D: GCO83148 D: CO83149
Project ID:	C30138 HONEY HILL (C	3-210)					
Client ID:	BULK-2 (BROWN MATE	RIAL)					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Asbestos	ND		%		09/01/23	*	NYSDOH 198.1 PLM

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Asbestos (NYSDOH 198.1 PLM) was analyzed by CT certified lab #PH-0622.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 05, 2023 Reviewed and Released by: Ethan Lee, Project Manager

С

Analysis I Septemb	Report per 05, 2023	FOR:	Attn: Tim Myjak EKI Environmental 8 80 Eastern Blvd. Sui Glastonbury, CT 060	te 5	
Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	BULK	Collected by:		08/25/23	10:32
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138	Laboratory	<u>Data</u>	SDG ID: Phoenix ID:	GCO83148 CO83150

Project ID:	C30138 HONEY HILL (C3-210)
Client ID:	BULK-3 (BLACK ASPHALT SHINGLES)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Asbestos	ND		%		09/01/23	*	NYSDOH 198.1 PLM	С

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Asbestos (NYSDOH 198.1 PLM) was analyzed by CT certified lab #PH-0622.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 05, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Tuesday, Se	eptember 05, 202	3	Sample Criteria Exc	eedances Report				
Criteria:	CT: GAM, RC		GC08314	•				
State:	СТ			-			RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Doto	to Dioploy ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc.Project Location: C30138 HONEY HILL (C3-210)Laboratory Sample ID(s): C083148-C083150

Client: EKI Environmental & Water Inc Project Number: Sampling Date(s): 8/25/2023

List RCP Methods Used (e.g., 8260, 8270, et cetera) None

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✔ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	□ Yes ☑ No □ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	✓ Yes □ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗌 Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗌 Yes 🗹 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.
Authorized Signature: Than See Position: Project Manager
Printed Name: Ethan Lee Date: Tuesday, September 05, 2023
Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

September 05, 2023

SDG I.D.: GCO83148

SDG Comments

Temperature above 6C:

The samples were received in a cooler with ice packs. The samples were delivered to the Laboratory within a short period of time after sample collection. Therefore no significant bias is suspected.

Temperature Narration

The samples were received at 9.0C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Coolant: IPK ICE L/ No Data Delivery/Contact Options:	Project P.O: (3-210 This section MUST be completed with Bottle Quantities.			Data Format n Data Format n C Excel RCS-1 / RCGW-1 C Excel RCS-2 / RCGW-2 C IS/Key RCS-2 / RCGW-3 C IS/Key RCS-2 / RCGW-4 C IS/Key C IS/Key C IS/Key RCS-2 / RCGW-4 C IS/Key C IS/Key C IS/Key
	H: 1) (thuy)at a ou const to m			CI MA CI MA C MA C NCP Certification C C C S C S C S C S C S C S C S C S C S S
CT/MA/RI CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: makrina@phoenixtabs.com Fax (860) 645-0823 Client Services (860) 645-1102				37. V S RI 37. V S RES DEC 34.3 I/C DEC 34.3 I/C DEC 34.3 I/C DEC 3andard GA Leachability Cher GA Leachability Other Objectives MAY APPLY Other
STOW		entification Date: 8/25/33 Water WW =Water Date: W =Wipe OIL=Oil	Sample Date Date Sampled Sampled Sampled Sampled Sampled Sampled 0:10 0 015620 10:11	34 /2/2
ENIX S	Hone And	Client Sample - Information - Identification Signature Date: 8/25 Signature Matrix code: Matrix Code: Date: 8/25 Matrix Code: Date: 8/25 Matrix Code: Client Sample - Information - Identification Dw=Drinking Water GW=Ground Water SW=Surface Water Ww=Waste Water B=Bat Client SE=Solid Solid Client Colspan="2"	Customer Sample S Identification	Accepted Accepted Culture or Regulation
PHOE Environmenta	Customer:	Sampler's Signature Signature Matrix Code: DW=Drinking Water (B=Bink L=Linut X= B=Bink L=Linut X=	PHOENK USE ONLY SAMPLE # 823149 82149 82150	Relinquished by: Relinquished by: Al-1-COLCM CU

Time: RI CT NA MA 13/15 RES DEC RCP Cert MC MC 13/15 RES DEC CWPC MA MC 13/15 RES DEC CWPC MA MC 13/15 RES DEC CWPC MA MC 13/15 I/C DEC CWPC CW-1 RCS-1 / RCS-1 / RCGW-1 13/16 I/C DEC SWPC CWPC CW-2 RCS-2 / RCGW-2 13/16 CMPC SWPC SWPC S-1 CS-2 / RCGW-2 11me: CAL CMPC S-1 CS-2 / RCGW-2 Inc 1 CAL CMPC S-1 CS-2 / RCGW-2 Inc 1 CAL CMPC S-1 CS-2 / RCGW-2 Inc 1 CAL CAL CS-2 / RCGW-2 Inc Inc Inc 1 CAL CS-2 / RCGW-2 S-1 Inc Inc Inc 1 CS-2 / RCGW-2 S-1 S-1 <td< th=""><th>X X X X <t< th=""><th>X I I I X X I I X I I I X I I I X I I I X I I I I I I I I</th></t<><th>Image: Section of the section of t</th><th>Market Market Market</th><th>Image: Section of the secting of the section of the secting of the secting of the secting of t</th><th>Project: Hurt, Hi U Coulds Hurt, Hi U Coulds Project: Report to: Immonio to: Immonio to: Immonio to: Immonio to: Quote # Immonio to: Immonio to: Immonio to: Immonio to: Immonio to: And Immonio to: And Immonio to: Immonio to</th><th>ast indicate Turnite, P.O. Box 370, Manchester, CT 06040 Exc. Rel 100 Exc. Rel 100 ast indicating prosentiates com Fax (600) 645-0023 Exc. Rel 100 Exc. Rel 100 Client Services (600) 645-0023 Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Notice to: Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Exc. Rel 100<</th><th>Phoenix Std Other SURCHARGE APPLIES</th></th></td<>	X X X X <t< th=""><th>X I I I X X I I X I I I X I I I X I I I X I I I I I I I I</th></t<> <th>Image: Section of the section of t</th> <th>Market Market Market</th> <th>Image: Section of the secting of the section of the secting of the secting of the secting of t</th> <th>Project: Hurt, Hi U Coulds Hurt, Hi U Coulds Project: Report to: Immonio to: Immonio to: Immonio to: Immonio to: Quote # Immonio to: Immonio to: Immonio to: Immonio to: Immonio to: And Immonio to: And Immonio to: Immonio to</th> <th>ast indicate Turnite, P.O. Box 370, Manchester, CT 06040 Exc. Rel 100 Exc. Rel 100 ast indicating prosentiates com Fax (600) 645-0023 Exc. Rel 100 Exc. Rel 100 Client Services (600) 645-0023 Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Notice to: Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Exc. Rel 100<</th> <th>Phoenix Std Other SURCHARGE APPLIES</th>	X I I I X X I I X I I I X I I I X I I I X I I I I I I I I	Image: Section of the section of t	Market	Image: Section of the secting of the section of the secting of the secting of the secting of t	Project: Hurt, Hi U Coulds Hurt, Hi U Coulds Project: Report to: Immonio to: Immonio to: Immonio to: Immonio to: Quote # Immonio to: Immonio to: Immonio to: Immonio to: Immonio to: And Immonio to: And Immonio to: Immonio to	ast indicate Turnite, P.O. Box 370, Manchester, CT 06040 Exc. Rel 100 Exc. Rel 100 ast indicating prosentiates com Fax (600) 645-0023 Exc. Rel 100 Exc. Rel 100 Client Services (600) 645-0023 Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Notice to: Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Notice to: Exc. Rel 100 Exc. Rel 100<	Phoenix Std Other SURCHARGE APPLIES
Ime: II CI NA MA 13/.VS I RES DEC Z RCP Cert MA 13/.VS I I/C DEC I GWPC GW-1 I	10:11 X 1 10:32 X 1 10:32 X 11:10 X 12:10 X 13:12 X 13:12 X 13:12 X 10:0EC SWPC 10:0EC SWPC	X I I X I I X I <td>Image: Section of the section of t</td> <td>Image: State of the state o</td> <td>123 134 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 114 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144</td> <td>Project: Hercy Hi V C30130 Project: Report to: The factor hi V C30130 Project: Invoice The factor hi V C30140 Project: Invoice The factor hi V C30140 Project: Invoice The factor hi V C30140 Project: Invoice The factor hi V C3014 Project: Invoice The factor hi V C3014 Project: Invoice The factor factor hi V C3014 Project: Invoice The factor factor factor hi V C3014 Project:</td> <td>First Induction First Induction First Induction Final: markina@phoenixlats.com Fax (860) 645-0823 First Induction Client Services (860) 645-1102 First Induction First Induction Project: Hurrit (100) Hurrit (100) First Induction Project: Hurrit (100) Hurrit (100) First Induction Project: Hurrit (100) Hurrit (100) Hurrit (100) Project: Hurrit (100) Hurrit (100) Hurrit (100)</td> <td></td>	Image: Section of the section of t	Image: State of the state o	123 134 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 104 144 144 144 144 114 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 116 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144 144 144 144 117 144	Project: Hercy Hi V C30130 Project: Report to: The factor hi V C30130 Project: Invoice The factor hi V C30140 Project: Invoice The factor hi V C30140 Project: Invoice The factor hi V C30140 Project: Invoice The factor hi V C3014 Project: Invoice The factor hi V C3014 Project: Invoice The factor factor hi V C3014 Project: Invoice The factor factor factor hi V C3014 Project:	First Induction First Induction First Induction Final: markina@phoenixlats.com Fax (860) 645-0823 First Induction Client Services (860) 645-1102 First Induction First Induction Project: Hurrit (100) Hurrit (100) First Induction Project: Hurrit (100) Hurrit (100) First Induction Project: Hurrit (100) Hurrit (100) Hurrit (100)	
Time: RI CT NA MA	10:11 X 10:32 X 10:32 X 10:32 X 10:32 X 10:32 X 11:1 X 12:1 V 12:1 V	Image: Second state	Image: Section of the section of t	Image: State of the s	13 13<	Project: Report to: Invoice to: Let Amaly the Consult of the second for the se	Fast Middle Turplie. P.O. Box 370. Manchester. CT 06040 Fast Middle Turplie. P.O. Box 370. Manchester. CT 06040 Client Services (600) 645-0823 Client Services (600) 645-0823 Client Services (600) 645-0823 Fast Middle Turplie. P.O. Box 370. Manchester. CT 06040 Fast Middle Turplie. P.O. Box 370. Manchester. CT 06040 Fast Middle Turplie. Prove Second Se	5 5
						Project: Report to: Invoice to: Consult de finite finit	Frast Middle Turpike. P.O. Box 370. Marchester, CT 06040 Erail: makina@phoenkidas.com Fax: Marchester, CT 06040 Enail: makina@phoenkidas.com Fax: (860) 645-0823 Client Services (860) 645-1023 Erail: Proise: Include the service of the service	
	10:17 (o: 32 ×					Project: Report to: Invoice to: Invoice to: Product Hill Consult & Consu	37 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Erast: matrix Brail: makina@phoenixlabs.com Fax: 8600 645-0823 Client Services (860) 645-0823 Erast: 1000 Project: Honort, Mit U C30138	+ + + +
	10;17 X 10:32 X					Project: Report to: Invoice to: Cuote # Quote # Provide # Pr	37 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: makina@phoenixlabs.com Fax: Lata Le 5. Telent Services (860) 645-0823 Client Services (860) 645-0823 East: Phone: Client Services (860) 645-0823 Client Services (860) 645-0823 East: Phone: Project: Honort Honort Honort Phone: Project: Honort Honort Honort Phone: Invoice to: Elect Calent Honort Phone: Quote # Quote Elect Calent Honort Phone: 1 X Phone: Phone: Phone: 1 X Phone: Phone: Phone: 1 X Phone: Phone: Phone:	$\left \right $
						Project: Report to: Invoice to: Autor # 1 0.30138 Provide the first	37 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Fax: Lata Le Email: markina@phoneixtabs.com Fax (860) 645-0823 Fax: Lata Le Client Services (860) 645-0823 Enail: Proside: Proside: Project: Hand, T102 Hond, T102 Enail: Proside: Project: Hand, T102 Hond, T102 Proside: Proside: Project: Hand, T102 Hond, T102 Proside: Proside: Project: Hand, T102 Proside: Proside: Proside: Project: Hand, T102 Proside: Proside: Proside: Provide to: Quote # Quote # Quote: Proside: Proside: Astronyling: Proside: Proside: Proside: Proside: Proside: Proside: Proside: Proside: Proside: Proside: Proside: Proside: Proside:	

Page 2 of 2

Eastern Analytical Services, Inc.

Bulk Sample Results RE: CPN GCO83148

	: Not Given d: 08/29/2023 d: 09/01/2023 : Fahrudin Lalic ethod: NYS-DOH 19 Code: 101646-0 (Tes 10851	08.4	Client	Phoenix Environmental Laboratories, Inc. P.O. Box 370 Manchester, CT 06040
Sample ID Nu	ımber	CO83148	CO83149	CO83150
Layer Number				
Lab ID Numb	er	2946338	2946339	2946340
Sample Locat	ion	Not Given	Not Given	Not Given
Sample Descr	iption	Black	Black	Black
Analytical Me	ethod	NOB Tem	NOB Tem	NOB Tem
Appearance	Layered Homogenous Fibrous Color	No No Yes Black	No No Yes Black	No No Yes Black
Asbestos Content	% Amosite % Chrysotile % Other	ND ND ND	ND ND ND	ND ND ND
	% Total Asbestos	ND	ND	ND
Other Materials	% Organic	34.2	80.1	85.1
Present	% Carbonates	2.5	3.9	6.9
	% Other Inorganic	63.3	16.0	8.0

Results Applicable To Those Items Tested. Report Cannot be Reproduced, Except Entirely, Without Written Approval of the Laboratory. Samples received in acceptable condition unless otherwise noted. ND = Not Detected. Liability Limited To Cost Of Analysis. This Report Must Not be Used by the Client to Claim Product Endorsement by NVLAP or Any Agency of the US Government. AIHA LAP, LLC No. 100263 Rhode Island DOH No. AAL-072 Massachusetts DOL No. A A 000072 Connecticut DOH No. PH-0622 Maine DEP No. LA-024 Vermont DOH No. AL-709936

Wednesday, September 13, 2023

Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

 Project ID:
 C30138 HONEY HILL (C3-210)

 SDG ID:
 GC083124

 Sample ID#s:
 CO83128, CO83136, CO83138, CO83140 - CO83141

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

September 13, 2023

SDG I.D.: GCO83124

Project ID: C30138 HONEY HILL (C3-210)

Client Id	Lab Id	Matrix
TP-6(1-2)	CO83128	SOIL
TP-13(2-3)	CO83136	SOIL
TP-14(1-2)	CO83138	SOIL
TP-15(2-3)	CO83140	SOIL
TP-15(4-5)	CO83141	SOIL

Analysis Report

FOR: Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

September 13, 2023

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/25/23	9:30
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138				0000040

Laboratory Data

RL/

SDG ID: GCO83124 Phoenix ID: CO83128

Project ID: C30138 HONEY HILL (C3-210)

Client ID:

TP-6(1-2)

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.50	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Arsenic	6.9	1.0	mg/Kg	1	09/09/23	CPP	SW6010D
Barium	336	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Beryllium	0.45	0.40	mg/Kg	1	09/09/23	CPP	SW6010D
Cadmium	2.52	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Chromium	33.4	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Copper	34.4	1.0	mg/kg	1	09/09/23	CPP	SW6010D
Mercury	< 0.04	0.04	mg/Kg	2	09/11/23	AL1	SW7471B
Nickel	23.7	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Lead	51.7	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Antimony	< 5.0	5.0	mg/Kg	1	09/09/23	CPP	SW6010D
Selenium	< 2.0	2.0	mg/Kg	1	09/09/23	CPP	SW6010D
Thallium	< 4.5	4.5	mg/Kg	1	09/09/23	CPP	SW6010D
Vanadium	35.1	0.50	mg/Kg	1	09/09/23	CPP	SW6010D
Zinc	152	1.0	mg/Kg	1	09/09/23	CPP	SW6010D
Percent Solid	64		%		08/28/23	CV	SW846-%Solid
Mercury Digestion	Completed				09/11/23	AL/AL	SW7471B
Soil Extraction for SVOA	Completed					Y/H/F	SW3545A
Total Metals Digest	Completed				08/28/23	P/AG	SW3050B
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	100	ug/Kg	1	08/31/23	AW	SW8270D
1,2,4-Trichlorobenzene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
1,2-Dichlorobenzene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
1,2-Diphenylhydrazine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
1,3-Dichlorobenzene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
1,4-Dichlorobenzene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2,2'-Oxybis(1-Chloropropane)	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
2,4,5-Trichlorophenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
2,4,6-Trichlorophenol	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dichlorophenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dimethylphenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dinitrophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
,6-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
-Chloronaphthalene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
-Chlorophenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
-Methylnaphthalene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
-Methylphenol (o-cresol)	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Nitrophenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
&4-Methylphenol (m&p-cresol)	ND	520	ug/Kg	1	08/31/23	AW	SW8270D
,3'-Dichlorobenzidine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
,6-Dinitro-2-methylphenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Bromophenyl phenyl ether	ND	520	ug/Kg	1	08/31/23	AW	SW8270D
-Chloro-3-methylphenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Chloroaniline	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
Chlorophenyl phenyl ether	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Nitroaniline	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Nitrophenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
cenaphthene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
cenaphthylene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
cetophenone	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
niline	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
nthracene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
enz(a)anthracene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
enzidine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
enzo(a)pyrene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
enzo(b)fluoranthene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
enzo(ghi)perylene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
	ND	360	ug/Kg ug/Kg	1	08/31/23	AW	SW8270D
enzo(k)fluoranthene	ND	1000	ug/Kg ug/Kg	1	08/31/23	AW	SW8270D
enzoic acid	ND	360		1	08/31/23	AW	SW8270D
enzyl butyl phthalate			ug/Kg				
is(2-chloroethoxy)methane	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
is(2-chloroethyl)ether	ND	520	ug/Kg	1	08/31/23	AW	SW8270D
is(2-ethylhexyl)phthalate	ND	520	ug/Kg	1	08/31/23	AW	SW8270D
arbazole	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
hrysene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
ibenz(a,h)anthracene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
ibenzofuran	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
iethyl phthalate	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
imethylphthalate	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
9i-n-butylphthalate	ND	520	ug/Kg	1	08/31/23	AW	SW8270D
i-n-octylphthalate	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
luoranthene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Fluorene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Hexachlorobenzene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Hexachlorobutadiene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
Hexachlorocyclopentadiene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Hexachloroethane	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Indeno(1,2,3-cd)pyrene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Isophorone	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Naphthalene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Nitrobenzene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
N-Nitrosodiphenylamine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
Pentachloronitrobenzene	ND	140	ug/Kg	1	08/31/23	AW	SW8270D
Pentachlorophenol	ND	520	ug/Kg	1	08/31/23	AW	SW8270D
Phenanthrene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Phenol	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Pyrene	ND	360	ug/Kg	1	08/31/23	AW	SW8270D
Pyridine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	69		%	1	08/31/23	AW	30 - 130 %
% 2-Fluorobiphenyl	56		%	1	08/31/23	AW	30 - 130 %
% 2-Fluorophenol	55		%	1	08/31/23	AW	30 - 130 %
% Nitrobenzene-d5	55		%	1	08/31/23	AW	30 - 130 %
% Phenol-d5	60		%	1	08/31/23	AW	30 - 130 %
% Terphenyl-d14	64		%	1	08/31/23	AW	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 13, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

September 13, 2023

Sample Informa	<u>ition</u>	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/25/23	10:10
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138	Laboratory	Data		GC0831

Laboratory Data

RL/

SDG ID: GCO83124 Phoenix ID: CO83136

Project ID: C30138 HONEY HILL (C3-210)

Client ID:

TP-13(2-3)

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.74	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Arsenic	16.9	1.5	mg/Kg	1	09/09/23	CPP	SW6010D
Barium	71.0	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Beryllium	1.24	0.60	mg/Kg	1	09/09/23	CPP	SW6010D
Cadmium	1.64	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Chromium	72.1	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Copper	21.2	1.5	mg/kg	1	09/09/23	CPP	SW6010D
Mercury	0.13	0.06	mg/Kg	2	09/11/23	AL1	SW7471B
Nickel	42.8	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Lead	41.8	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Antimony	< 7.4	7.4	mg/Kg	1	09/09/23	CPP	SW6010D
Selenium	< 3.0	3.0	mg/Kg	1	09/09/23	CPP	SW6010D
Thallium	< 5.0	5.0	mg/Kg	1	09/09/23	CPP	SW6010D
Vanadium	59.4	0.74	mg/Kg	1	09/09/23	CPP	SW6010D
Zinc	92.3	1.5	mg/Kg	1	09/09/23	CPP	SW6010D
Percent Solid	46		%		08/28/23	CV	SW846-%Solid
Field Extraction	Completed				08/25/23		SW5035A
Mercury Digestion	Completed				09/11/23	AL/AL	SW7471B
Extraction of ETPH	Completed				08/30/23	L/H/A	SW3545A
Soil Extraction for Herbicide	Completed				08/31/23	L/D	SW3546
Soil Extraction for Pesticide	Completed				08/29/23	A/F	SW3545A
Soil Extraction for SVOA	Completed				08/30/23	C/JDW	/ SW3545A
Extraction for PCB	Completed				08/31/23	/R/AC1/	MSW3540C
Total Metals Digest	Completed				08/28/23	P/AG	SW3050B
Chlorinated Herbicides							
2,4,5-T	ND	270	ug/Kg	10	09/05/23	JRB	SW8151A

Client ID. TF - 13(2-3)	RL/								
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference		
2,4,5-TP (Silvex)	ND	270	ug/Kg	10	09/05/23	JRB	SW8151A		
2,4-D	ND	540	ug/Kg	10	09/05/23	JRB	SW8151A		
2,4-DB	ND	5400	ug/Kg	10	09/05/23	JRB	SW8151A		
Dalapon	ND	270	ug/Kg	10	09/05/23	JRB	SW8151A		
Dicamba	ND	270	ug/Kg	10	09/05/23	JRB	SW8151A		
Dichloroprop	ND	270	ug/Kg	10	09/05/23	JRB	SW8151A		
Dinoseb	ND	540	ug/Kg	10	09/05/23	JRB	SW8151A		
QA/QC Surrogates									
% DCAA	70		%	10	09/05/23	JRB	30 - 150 %		
% DCAA (Confirmation)	74		%	10	09/05/23	JRB	30 - 150 %		
TPH by GC (Extractable	Product	<u>s)</u>							
Ext. Petroleum H.C. (C9-C36)	ND	500	mg/Kg	10	08/31/23	KCA	CTETPH		
Identification	ND		mg/Kg	10	08/31/23	KCA	CTETPH		
QA/QC Surrogates									
% COD (surr)	97		%	10	08/31/23	KCA	50 - 150 %		
% Terphenyl (surr)	86		%	10	08/31/23	KCA	50 - 150 %		
PCB (Soxhlet SW3540C	;)								
PCB-1016	▲ ND	720	ug/Kg	10	09/01/23	KCA	SW8082A		
PCB-1221	ND	720	ug/Kg	10	09/01/23		SW8082A		
PCB-1232	ND	720	ug/Kg	10	09/01/23		SW8082A		
PCB-1242	ND	720	ug/Kg	10	09/01/23	KCA			
PCB-1248	ND	720	ug/Kg	10	09/01/23		SW8082A		
PCB-1254	ND	720	ug/Kg	10	09/01/23	KCA	SW8082A		
PCB-1260	ND	720	ug/Kg	10	09/01/23		SW8082A		
PCB-1262	ND	720	ug/Kg	10	09/01/23	KCA			
PCB-1268	ND	720	ug/Kg	10	09/01/23	KCA	SW8082A		
QA/QC Surrogates									
% DCBP	47		%	10	09/01/23	KCA	30 - 150 %		
% DCBP (Confirmation)	35		%	10	09/01/23	KCA	30 - 150 %		
% TCMX	30		%	10	09/01/23	KCA	30 - 150 %		
% TCMX (Confirmation)	31		%	10	09/01/23	KCA	30 - 150 %		
Pesticides									
4,4' -DDD	ND	2.9	ug/Kg	2	08/31/23	AW	SW8081B		
4,4' -DDE	ND	2.9	ug/Kg	2	08/31/23	AW	SW8081B		
4,4' -DDT	ND	2.9	ug/Kg	2	08/31/23	AW	SW8081B		
a-BHC	ND	2.0	ug/Kg	2	08/31/23	AW	SW8081B		
Alachlor	ND	14	ug/Kg	2	08/31/23	AW	SW8081B		
Aldrin	ND	2.0	ug/Kg	2	08/31/23	AW	SW8081B		
b-BHC	ND	2.0	ug/Kg	2	08/31/23	AW	SW8081B		
Chlordane	140	71	ug/Kg	2	08/31/23	AW	SW8081B		
d-BHC	ND	2.0	ug/Kg	2	08/31/23	AW	SW8081B		
Dieldrin	ND	2.9	ug/Kg	2	08/31/23	AW	SW8081B		
Endosulfan I	ND	14	ug/Kg	2	08/31/23	AW	SW8081B		
Endosulfan II	ND	14	ug/Kg	2	08/31/23	AW	SW8081B		
Endosulfan sulfate	ND	14	ug/Kg	2	08/31/23	AW	SW8081B		
Endrin	ND	14	ug/Kg	2	08/31/23	AW	SW8081B		
Endrin aldehyde	ND	14	ug/Kg	2	08/31/23	AW	SW8081B		

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Endrin ketone	ND	14	ug/Kg	2	08/31/23	AW	SW8081B
g-BHC	ND	2.9	ug/Kg	2	08/31/23	AW	SW8081B
Heptachlor	ND	7.1	ug/Kg	2	08/31/23	AW	SW8081B
Heptachlor epoxide	ND	14	ug/Kg	2	08/31/23	AW	SW8081B
Methoxychlor	ND	71	ug/Kg	2	08/31/23	AW	SW8081B
Toxaphene	ND	290	ug/Kg	2	08/31/23	AW	SW8081B
QA/QC Surrogates							
% DCBP	38		%	2	08/31/23	AW	30 - 150 %
% DCBP (Confirmation)	44		%	2	08/31/23	AW	30 - 150 %
% TCMX	33		%	2	08/31/23	AW	30 - 150 %
% TCMX (Confirmation)	36		%	2	08/31/23	AW	30 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,1,1-Trichloroethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,1,2,2-Tetrachloroethane	ND	5.1	ug/Kg	1	08/28/23	JLI	SW8260D
1,1,2-Trichloroethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,1-Dichloroethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,1-Dichloroethene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,1-Dichloropropene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,2,3-Trichlorobenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
1,2,3-Trichloropropane	ND	1000	ug/Kg	50 50	08/28/23	JLI	SW8260D
1,2,4-Trichlorobenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D SW8260D
	ND	1000	ug/Kg	50 50	08/28/23	JLI	SW8260D SW8260D
1,2,4-Trimethylbenzene	ND	5.0			08/28/23	JLI	SW8260D SW8260D
1,2-Dibromo-3-chloropropane	ND	5.0 0.85	ug/Kg	1	08/28/23	JLI	SW8260D SW8260D
1,2-Dibromoethane	ND	1000	ug/Kg ug/Kg	1 50	08/28/23	JLI	SW8260D SW8260D
1,2-Dichlorobenzene	ND	8.5			08/28/23	JLI	SW8260D SW8260D
1,2-Dichloroethane			ug/Kg	1			
1,2-Dichloropropane	ND	8.5 1000	ug/Kg	1	08/28/23	JLI	SW8260D
1,3,5-Trimethylbenzene	ND		ug/Kg	50	08/28/23	JLI	SW8260D
1,3-Dichlorobenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
1,3-Dichloropropane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
1,4-Dichlorobenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
2,2-Dichloropropane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
2-Chlorotoluene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
2-Hexanone	ND	42	ug/Kg	1	08/28/23	JLI	SW8260D
2-Isopropyltoluene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
4-Chlorotoluene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
4-Methyl-2-pentanone	ND	42	ug/Kg	1	08/28/23	JLI	SW8260D
Acetone	ND	420	ug/Kg	1	08/28/23	JLI	SW8260D
Acrylonitrile	ND	8.5 8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Benzene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Bromobenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
Bromochloromethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Bromodichloromethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Bromoform	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Bromomethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Carbon Disulfide	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Carbon tetrachloride	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Chlorobenzene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Chloroethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Chloroform	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Chloromethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
cis-1,2-Dichloroethene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
cis-1,3-Dichloropropene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Dibromochloromethane	ND	5.1	ug/Kg	1	08/28/23	JLI	SW8260D
Dibromomethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Dichlorodifluoromethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Ethylbenzene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Hexachlorobutadiene	ND	200	ug/Kg	50	08/28/23	JLI	SW8260D
sopropylbenzene	ND	500	ug/Kg	50	08/28/23	JLI	SW8260D
m&p-Xylene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Methyl Ethyl Ketone	ND	51	ug/Kg	1	08/28/23	JLI	SW8260D
Methyl t-butyl ether (MTBE)	ND	17	ug/Kg	1	08/28/23	JLI	SW8260D
Methylene chloride	ND	17	ug/Kg	1	08/28/23	JLI	SW8260D
Naphthalene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
n-Butylbenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
n-Propylbenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
p-Xylene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
o-Isopropyltoluene	ND	500	ug/Kg	50	08/28/23	JLI	SW8260D
sec-Butylbenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
Styrene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
ert-Butylbenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
Tetrachloroethene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Tetrahydrofuran (THF)	ND	17	ug/Kg	1	08/28/23	JLI	SW8260D
Foluene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Total Xylenes	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
rans-1,2-Dichloroethene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
rans-1,3-Dichloropropene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
rans-1,4-dichloro-2-butene	ND	2000	ug/Kg	50	08/28/23	JLI	SW8260D
Frichloroethene	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Frichlorofluoromethane	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
Trichlorotrifluoroethane	ND	17	ug/Kg	1	08/28/23	JLI	SW8260D
/inyl chloride	ND	8.5	ug/Kg	1	08/28/23	JLI	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	92		%	1	08/28/23	JLI	70 - 130 %
% Bromofluorobenzene	73		%	1	08/28/23	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	08/28/23	JLI	70 - 130 %
% Toluene-d8	86		%	1	08/28/23	JLI	70 - 130 %
% 1,2-dichlorobenzene-d4 (50x)	96		%	50	08/28/23	JLI	70 - 130 %
% Bromofluorobenzene (50x)	100		%	50	08/28/23	JLI	70 - 130 %
% Dibromofluoromethane (50x)	95		%	50	08/28/23	JLI	70 - 130 %
% Toluene-d8 (50x)	94		%	50	08/28/23	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	100	ug/Kg	1	08/31/23	PS	SW8270D
1,2,4-Trichlorobenzene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
1,2-Dichlorobenzene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
1,2-Diphenylhydrazine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
1,3-Dichlorobenzene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
,4-Dichlorobenzene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
2,2'-Oxybis(1-Chloropropane)	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
,4,5-Trichlorophenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
,4,6-Trichlorophenol	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dichlorophenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dimethylphenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dinitrophenol	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
4-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
6-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Chloronaphthalene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Chlorophenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Methylnaphthalene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Methylphenol (o-cresol)	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
-Nitrophenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
&4-Methylphenol (m&p-cresol)	ND	700	ug/Kg	1	08/31/23	PS	SW8270D
3'-Dichlorobenzidine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
6-Dinitro-2-methylphenol	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
Bromophenyl phenyl ether	ND	700	ug/Kg	1	08/31/23	PS	SW8270D
Chloro-3-methylphenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Chloroaniline	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Chlorophenyl phenyl ether	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
Nitrophenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
cenaphthene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
cenaphthylene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
	ND	490 490	ug/Kg	1	08/31/23	PS	SW8270D SW8270D
cetophenone niline	ND	490 200	ug/Kg ug/Kg	1	08/31/23	PS	SW8270D
	ND	200 490			08/31/23	PS	SW8270D SW8270D
nthracene		490 490	ug/Kg	1		PS	
enz(a)anthracene	700 ND		ug/Kg	1	08/31/23 08/31/23	PS PS	SW8270D SW8270D
enzidine		200	ug/Kg	1			
enzo(a)pyrene	880	490	ug/Kg	1	08/31/23	PS	SW8270D
enzo(b)fluoranthene	1800	490	ug/Kg	1	08/31/23	PS	SW8270D
enzo(ghi)perylene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
enzo(k)fluoranthene	570	490	ug/Kg	1	08/31/23	PS	SW8270D
enzoic acid	ND	1400	ug/Kg	1	08/31/23	PS	SW8270D
enzyl butyl phthalate	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
is(2-chloroethoxy)methane	ND	420	ug/Kg	1	08/31/23	PS	SW8270D
s(2-chloroethyl)ether	ND	700	ug/Kg	1	08/31/23	PS	SW8270D
s(2-ethylhexyl)phthalate	ND	700	ug/Kg	1	08/31/23	PS	SW8270D
arbazole	270	200	ug/Kg	1	08/31/23	PS	SW8270D
hrysene	1000	490	ug/Kg	1	08/31/23	PS	SW8270D
ibenz(a,h)anthracene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
ibenzofuran	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
iethyl phthalate	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
imethylphthalate	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
i-n-butylphthalate	ND	700	ug/Kg	1	08/31/23	PS	SW8270D
i-n-octylphthalate	ND	490	ug/Kg	1	08/31/23	PS	SW8270D

(, , , , , , , , , , , , , , , , , , ,		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Fluoranthene	1500	490	ug/Kg	1	08/31/23	PS	SW8270D
Fluorene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorobenzene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorobutadiene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorocyclopentadiene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Hexachloroethane	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Indeno(1,2,3-cd)pyrene	540	490	ug/Kg	1	08/31/23	PS	SW8270D
Isophorone	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Naphthalene	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Nitrobenzene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
N-Nitrosodiphenylamine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Pentachloronitrobenzene	ND	140	ug/Kg	1	08/31/23	PS	SW8270D
Pentachlorophenol	ND	850	ug/Kg	1	08/31/23	PS	SW8270D
Phenanthrene	820	490	ug/Kg	1	08/31/23	PS	SW8270D
Phenol	ND	490	ug/Kg	1	08/31/23	PS	SW8270D
Pyrene	1400	490	ug/Kg	1	08/31/23	PS	SW8270D
Pyridine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	56		%	1	08/31/23	PS	30 - 130 %
% 2-Fluorobiphenyl	46		%	1	08/31/23	PS	30 - 130 %
% 2-Fluorophenol	45		%	1	08/31/23	PS	30 - 130 %
% Nitrobenzene-d5	56		%	1	08/31/23	PS	30 - 130 %
% Phenol-d5	51		%	1	08/31/23	PS	30 - 130 %
% Terphenyl-d14	45		%	1	08/31/23	PS	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

Semi-Volatile Comment:

An elevated RL was reported due to low % solids; some compounds are evaluated below the lowest calibration standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director September 13, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

September 13, 2023

Sample Informa	<u>ition</u>	Custody Inform	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:		08/25/23	10:20
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138	Laboratory	Data		GC0831

Laboratory Data

RL/

SDG ID: GCO83124 Phoenix ID: CO83138

Project ID: C30138 HONEY HILL (C3-210)

Client ID:

TP-14(1-2)

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.39	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Arsenic	12.1	0.77	mg/Kg	1	09/09/23	CPP	SW6010D
Barium	32.1	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Beryllium	0.55	0.31	mg/Kg	1	09/09/23	CPP	SW6010D
Cadmium	0.90	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Chromium	38.3	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Copper	7.9	0.8	mg/kg	1	09/09/23	CPP	SW6010D
Mercury	0.03	0.03	mg/Kg	2	09/11/23	AL1	SW7471B
Nickel	22.2	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Lead	7.98	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Antimony	< 3.9	3.9	mg/Kg	1	09/09/23	CPP	SW6010D
Selenium	< 1.5	1.5	mg/Kg	1	09/09/23	CPP	SW6010D
Thallium	< 3.5	3.5	mg/Kg	1	09/09/23	CPP	SW6010D
Vanadium	37.2	0.39	mg/Kg	1	09/09/23	CPP	SW6010D
Zinc	36.3	0.8	mg/Kg	1	09/09/23	CPP	SW6010D
Percent Solid	76		%		08/28/23	CV	SW846-%Solid
Mercury Digestion	Completed				09/11/23	AL/AL	SW7471B
Soil Extraction for SVOA	Completed				08/30/23	C/JDW	SW3545A
Total Metals Digest	Completed				08/28/23	P/AG	SW3050B
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	100	ug/Kg	1	08/31/23	AW	SW8270D
1,2,4-Trichlorobenzene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
1,2-Dichlorobenzene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
1,2-Diphenylhydrazine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
1,3-Dichlorobenzene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
1,4-Dichlorobenzene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
2,2'-Oxybis(1-Chloropropane)	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
2,4,5-Trichlorophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
2,4,6-Trichlorophenol	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
2,4-Dichlorophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dimethylphenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dinitrophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
,4-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
,6-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
-Chloronaphthalene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Chlorophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Methylnaphthalene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Methylphenol (o-cresol)	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Nitrophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
&4-Methylphenol (m&p-cresol)	ND	430	ug/Kg	1	08/31/23	AW	SW8270D
,3'-Dichlorobenzidine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
,6-Dinitro-2-methylphenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Bromophenyl phenyl ether	ND	430	ug/Kg	1	08/31/23	AW	SW8270D
-Chloro-3-methylphenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Chloroaniline	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
-Chlorophenyl phenyl ether	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Nitrophenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
cenaphthene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
cenaphthylene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
cetophenone	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
niline	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
nthracene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
enz(a)anthracene enzidine	ND	200	ug/Kg ug/Kg	1	08/31/23	AW	SW8270D
	ND	300		1	08/31/23	AW	SW8270D SW8270D
enzo(a)pyrene	ND	300	ug/Kg ug/Kg		08/31/23	AW	SW8270D
enzo(b)fluoranthene	ND	300		1 1	08/31/23	AW	SW8270D SW8270D
enzo(ghi)perylene			ug/Kg				
enzo(k)fluoranthene	ND	300	ug/Kg	1	08/31/23 08/31/23	AW	SW8270D
enzoic acid	ND	860	ug/Kg	1		AW	SW8270D
enzyl butyl phthalate	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
is(2-chloroethoxy)methane	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
is(2-chloroethyl)ether	ND	430	ug/Kg	1	08/31/23	AW	SW8270D
is(2-ethylhexyl)phthalate	ND	430	ug/Kg	1	08/31/23	AW	SW8270D
arbazole	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
hrysene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
ibenz(a,h)anthracene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
ibenzofuran	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
iethyl phthalate	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
vimethylphthalate	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
i-n-butylphthalate	ND	430	ug/Kg	1	08/31/23	AW	SW8270D
ii-n-octylphthalate	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
luoranthene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D

Deremeter	Decult	RL/	Linita	Dilution	Data/Tima	D./	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Fluorene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Hexachlorobenzene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Hexachlorobutadiene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
Hexachlorocyclopentadiene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Hexachloroethane	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Indeno(1,2,3-cd)pyrene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Isophorone	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Naphthalene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Nitrobenzene	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
N-Nitrosodiphenylamine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
Pentachloronitrobenzene	ND	140	ug/Kg	1	08/31/23	AW	SW8270D
Pentachlorophenol	ND	430	ug/Kg	1	08/31/23	AW	SW8270D
Phenanthrene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Phenol	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Pyrene	ND	300	ug/Kg	1	08/31/23	AW	SW8270D
Pyridine	ND	200	ug/Kg	1	08/31/23	AW	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	62		%	1	08/31/23	AW	30 - 130 %
% 2-Fluorobiphenyl	54		%	1	08/31/23	AW	30 - 130 %
% 2-Fluorophenol	52		%	1	08/31/23	AW	30 - 130 %
% Nitrobenzene-d5	59		%	1	08/31/23	AW	30 - 130 %
% Phenol-d5	57		%	1	08/31/23	AW	30 - 130 %
% Terphenyl-d14	53		%	1	08/31/23	AW	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Semi-Volatile Comment:

An elevated RL was reported due to low % solids; some compounds are evaluated below the lowest calibration standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 13, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

September 13, 2023

Sample Informa	ition	Custody Inform	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:		08/25/23	10:30
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138	Labaratary	Data	SDG ID.	GC08312

C30138 HONEY HILL (C3-210)

Project ID: Client ID:

TP-15(2-3)

Laboratory Data

SDG ID: GCO83124 Phoenix ID: CO83140

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Falamelei	Result			Dilution	Date/Time	Бу	Reference
Silver	< 1.5	1.5	mg/Kg	1	09/09/23	CPP	SW6010D
Arsenic	37.0	1.7	mg/Kg	1	09/09/23	CPP	SW6010D
Barium	133	0.83	mg/Kg	1	09/09/23	CPP	SW6010D
Beryllium	< 0.66	0.66	mg/Kg	1	09/09/23	CPP	SW6010D
Cadmium	3.82	0.83	mg/Kg	1	09/09/23	CPP	SW6010D
Chromium	38.1	0.83	mg/Kg	1	09/09/23	CPP	SW6010D
Copper	114	1.7	mg/kg	1	09/09/23	CPP	SW6010D
Mercury	0.17	0.06	mg/Kg	2	09/11/23	AL1	SW7471B
Nickel	52.2	0.83	mg/Kg	1	09/09/23	CPP	SW6010D
Lead	282	0.83	mg/Kg	1	09/09/23	CPP	SW6010D
Antimony	< 8.3	8.3	mg/Kg	1	09/09/23	CPP	SW6010D
Selenium	< 3.3	3.3	mg/Kg	1	09/09/23	CPP	SW6010D
Thallium	< 5.0	5.0	mg/Kg	1	09/09/23	CPP	SW6010D
Vanadium	240	0.83	mg/Kg	1	09/09/23	CPP	SW6010D
Zinc	1010	17	mg/Kg	10	09/11/23	TH	SW6010D
Percent Solid	42		%		08/28/23	CV	SW846-%Solid
Field Extraction	Completed				08/25/23		SW5035A
Mercury Digestion	Completed				09/11/23	AL/AL	SW7471B
Extraction of ETPH	Completed				08/30/23	L/H/A	SW3545A
Soil Extraction for Herbicide	Completed				08/31/23	L/D	SW3546
Soil Extraction for Pesticide	Completed				09/01/23	C/JDW	/ SW3545A
Soil Extraction for SVOA	Completed				08/30/23	C/JDW	/ SW3545A
Extraction for PCB	Completed				08/31/23	/R/AC1/I	wSW3540C
Total Metals Digest	Completed				08/28/23	P/AG	SW3050B
Chlorinated Herbicide	<u>s</u>						
2,4,5-T	ND	290	ug/Kg	10	09/05/23	JRB	SW8151A

Gilent ID. 17-15(2-5)		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
2,4,5-TP (Silvex)	ND	290	ug/Kg	10	09/05/23	JRB	SW8151A
2,4-D	ND	590	ug/Kg	10	09/05/23	JRB	SW8151A
2,4-DB	ND	5900	ug/Kg	10	09/05/23	JRB	SW8151A
Dalapon	ND	290	ug/Kg	10	09/05/23	JRB	SW8151A
Dicamba	ND	290	ug/Kg	10	09/05/23	JRB	SW8151A
Dichloroprop	ND	290	ug/Kg	10	09/05/23	JRB	SW8151A
Dinoseb	ND	590	ug/Kg	10	09/05/23	JRB	SW8151A
QA/QC Surrogates							
% DCAA	66		%	10	09/05/23	JRB	30 - 150 %
% DCAA (Confirmation)	80		%	10	09/05/23	JRB	30 - 150 %
TPH by GC (Extractable	Product	s <u>)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	500	mg/Kg	10	08/31/23	KCA	СТЕТРН
Identification	ND		mg/Kg	10	08/31/23	KCA	CTETPH
QA/QC Surrogates							
% COD (surr)	61		%	10	08/31/23	KCA	50 - 150 %
% Terphenyl (surr)	65		%	10	08/31/23	KCA	50 - 150 %
PCB (Soxhlet SW3540C)							
PCB-1016	ND	790	ug/Kg	10	09/01/23	KCA	SW8082A
PCB-1221	ND	790	ug/Kg	10	09/01/23		SW8082A
PCB-1221 PCB-1232	ND	790	ug/Kg	10	09/01/23		SW8082A SW8082A
PCB-1232 PCB-1242	ND	790	ug/Kg	10	09/01/23	KCA	
PCB-1248	ND	790	ug/Kg	10	09/01/23		SW8082A
PCB-1240 PCB-1254	ND	790	ug/Kg	10	09/01/23		SW8082A SW8082A
PCB-1254 PCB-1260	ND	790 790	ug/Kg ug/Kg	10	09/01/23		SW8082A SW8082A
PCB-1260	ND	790	ug/Kg	10	09/01/23	KCA	
PCB-1268	ND	790	ug/Kg	10	09/01/23		SW8082A
QA/QC Surrogates	ND	750	ug/itg	10	00/01/20	NOA	0110002A
% DCBP	52		%	10	09/01/23	KCA	30 - 150 %
% DCBP (Confirmation)	39		%	10	09/01/23	KCA	
% TCMX	31		%	10	09/01/23		30 - 150 %
% TCMX (Confirmation)	32		%	10	09/01/23		30 - 150 %
Pesticides 4,4' -DDD	ND	3.0	ug/Kg	2	09/06/23	AW	SW8081B
4,4 -DDD 4,4' -DDE	ND	3.0		2	09/06/23	AW	SW8081B SW8081B
	ND	3.0	ug/Kg		09/06/23	AW	SW8081B SW8081B
4,4' -DDT	ND	3.0 2.0	ug/Kg	2 2	09/06/23	AW	SW8081B SW8081B
a-BHC	ND	2.0 16	ug/Kg	2	09/06/23	AW	SW8081B SW8081B
Alachlor	ND	2.0	ug/Kg		09/06/23	AW	SW8081B SW8081B
Aldrin	ND	2.0	ug/Kg	2 2	09/06/23	AW	SW8081B SW8081B
b-BHC			ug/Kg		09/06/23		
Chlordane	150 ND	78 2.0	ug/Kg	2 2	09/06/23	AW AW	SW8081B SW8081B
d-BHC Dialdrin			ug/Kg				
Dieldrin Endeeulfen l	4.0	3.1	ug/Kg	2	09/06/23	AW	SW8081B
Endosulfan I	ND	16 10	ug/Kg	2	09/06/23	AW	SW8081B
Endosulfan II	ND	16 10	ug/Kg	2	09/06/23	AW	SW8081B
Endosulfan sulfate	ND	16	ug/Kg	2	09/06/23	AW	SW8081B
Endrin	ND	16 16	ug/Kg	2	09/06/23	AW	SW8081B
Endrin aldehyde	ND	16	ug/Kg	2	09/06/23	AW	SW8081B

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Endrin ketone	ND	16	ug/Kg	2	09/06/23	AW	SW8081B
g-BHC	ND	2.0	ug/Kg	2	09/06/23	AW	SW8081B
Heptachlor	ND	7.8	ug/Kg	2	09/06/23	AW	SW8081B
Heptachlor epoxide	ND	16	ug/Kg	2	09/06/23	AW	SW8081B
Methoxychlor	ND	78	ug/Kg	2	09/06/23	AW	SW8081B
Toxaphene	ND	310	ug/Kg	2	09/06/23	AW	SW8081B
QA/QC Surrogates							
% DCBP	54		%	2	09/06/23	AW	30 - 150 %
% DCBP (Confirmation)	65		%	2	09/06/23	AW	30 - 150 %
% TCMX	41		%	2	09/06/23	AW	30 - 150 %
% TCMX (Confirmation)	52		%	2	09/06/23	AW	30 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
1,1,1-Trichloroethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
1,1,2,2-Tetrachloroethane	ND	5.3	ug/Kg	1	08/29/23	JLI	SW8260D
1,1,2-Trichloroethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
1,1-Dichloroethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D SW8260D
1,1-Dichloroethene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D SW8260D
1,1-Dichloropropene							
1,2,3-Trichlorobenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D SW8260D
1,2,3-Trichloropropane	ND	1200	ug/Kg	50	08/28/23	JLI	
1,2,4-Trichlorobenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
1,2,4-Trimethylbenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	08/29/23	JLI	SW8260D
1,2-Dibromoethane	ND	0.88	ug/Kg	1	08/29/23	JLI	SW8260D
1,2-Dichlorobenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
1,2-Dichloroethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
1,2-Dichloropropane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
1,3,5-Trimethylbenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
1,3-Dichlorobenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
1,3-Dichloropropane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
1,4-Dichlorobenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
2,2-Dichloropropane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
2-Chlorotoluene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
2-Hexanone	ND	44	ug/Kg	1	08/29/23	JLI	SW8260D
2-Isopropyltoluene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
4-Chlorotoluene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
4-Methyl-2-pentanone	ND	44	ug/Kg	1	08/29/23	JLI	SW8260D
Acetone	ND	440	ug/Kg	1	08/29/23	JLI	SW8260D
Acrylonitrile	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Benzene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Bromobenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
Bromochloromethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Bromodichloromethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Bromoform	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Bromomethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Carbon Disulfide	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Carbon tetrachloride	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Chlorobenzene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
			0.0		-		

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Chloroethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Chloroform	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Chloromethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
cis-1,2-Dichloroethene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
cis-1,3-Dichloropropene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Dibromochloromethane	ND	5.3	ug/Kg	1	08/29/23	JLI	SW8260D
Dibromomethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Dichlorodifluoromethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Ethylbenzene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Hexachlorobutadiene	ND	200	ug/Kg	50	08/28/23	JLI	SW8260D
lsopropylbenzene	ND	500	ug/Kg	50	08/28/23	JLI	SW8260D
m&p-Xylene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Methyl Ethyl Ketone	ND	53	ug/Kg	1	08/29/23	JLI	SW8260D
Methyl t-butyl ether (MTBE)	ND	18	ug/Kg	1	08/29/23	JLI	SW8260D
Methylene chloride	ND	18	ug/Kg	1	08/29/23	JLI	SW8260D
Naphthalene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
n-Butylbenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
n-Propylbenzene	ND	1000	ug/Kg	50	08/28/23	JLI	SW8260D
p-Xylene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
o-Isopropyltoluene	ND	500	ug/Kg	50	08/28/23	JLI	SW8260D
sec-Butylbenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
Styrene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
ert-Butylbenzene	ND	1200	ug/Kg	50	08/28/23	JLI	SW8260D
Tetrachloroethene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Tetrahydrofuran (THF)	ND	18	ug/Kg	1	08/29/23	JLI	SW8260D
Toluene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Total Xylenes	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
trans-1,2-Dichloroethene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
trans-1,3-Dichloropropene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
trans-1,4-dichloro-2-butene	ND	2300	ug/Kg	50	08/28/23	JLI	SW8260D
Trichloroethene	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Trichlorofluoromethane	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
Trichlorotrifluoroethane	ND	18	ug/Kg	1	08/29/23	JLI	SW8260D
Vinyl chloride	ND	8.8	ug/Kg	1	08/29/23	JLI	SW8260D
QA/QC Surrogates			0 0				
% 1,2-dichlorobenzene-d4	87		%	1	08/29/23	JLI	70 - 130 %
% Bromofluorobenzene	71		%	1	08/29/23	JLI	70 - 130 %
% Dibromofluoromethane	103		%	1	08/29/23	JLI	70 - 130 %
% Toluene-d8	87		%	1	08/29/23	JLI	70 - 130 %
% 1,2-dichlorobenzene-d4 (50x)	97		%	50	08/28/23	JLI	70 - 130 %
% Bromofluorobenzene (50x)	98		%	50	08/28/23	JLI	70 - 130 %
% Dibromofluoromethane (50x)	93		%	50	08/28/23	JLI	70 - 130 %
% Toluene-d8 (50x)	94		%	50	08/28/23	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	100	ug/Kg	1	08/31/23	PS	SW8270D
1,2,4-Trichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
1,2-Dichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
1,2-Diphenylhydrazine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
1,3-Dichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
,4-Dichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
2,2'-Oxybis(1-Chloropropane)	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
2,4,5-Trichlorophenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
,4,6-Trichlorophenol	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dichlorophenol	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dimethylphenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dinitrophenol	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
,4-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
,6-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
-Chloronaphthalene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
-Chlorophenol	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
-Methylnaphthalene	ND	560	ug/Kg	1	08/31/23	PS	SW8270D
-Methylphenol (o-cresol)	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
-Nitrophenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
&4-Methylphenol (m&p-cresol)	ND	1700	ug/Kg	1	08/31/23	PS	SW8270D
,3'-Dichlorobenzidine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
,6-Dinitro-2-methylphenol	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
-Bromophenyl phenyl ether	ND	1700	ug/Kg	1	08/31/23	PS	SW8270D
Chloro-3-methylphenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
-Chloroaniline	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
-Chlorophenyl phenyl ether	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D
Nitrophenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
cenaphthene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
cenaphthylene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
cetophenone	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
niline	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
nthracene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
enz(a)anthracene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
enzidine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
enzo(a)pyrene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
	1100	1000	ug/Kg ug/Kg	1	08/31/23	PS	SW8270D
enzo(b)fluoranthene	ND	1000	ug/Kg ug/Kg		08/31/23	PS	SW8270D
enzo(ghi)perylene	ND	1000		1	08/31/23	PS	SW8270D SW8270D
enzo(k)fluoranthene			ug/Kg	1			
enzoic acid	ND	3300	ug/Kg	1	08/31/23	PS	SW8270D
enzyl butyl phthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
is(2-chloroethoxy)methane	ND	420	ug/Kg	1	08/31/23	PS	SW8270D
is(2-chloroethyl)ether	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
is(2-ethylhexyl)phthalate	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
arbazole	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
hrysene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
ibenz(a,h)anthracene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
ibenzofuran	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
iethyl phthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Dimethylphthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
i-n-butylphthalate	ND	1700	ug/Kg	1	08/31/23	PS	SW8270D
i-n-octylphthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D

_		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Iuoranthene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Fluorene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorobenzene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorobutadiene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorocyclopentadiene	ND	840	ug/Kg	1	08/31/23	PS	SW8270D
Hexachloroethane	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
ndeno(1,2,3-cd)pyrene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
sophorone	ND	740	ug/Kg	1	08/31/23	PS	SW8270D
Naphthalene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Nitrobenzene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
N-Nitrosodiphenylamine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Pentachloronitrobenzene	ND	140	ug/Kg	1	08/31/23	PS	SW8270D
Pentachlorophenol	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
Phenanthrene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Phenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Pyrene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Pyridine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	70		%	1	08/31/23	PS	30 - 130 %
% 2-Fluorobiphenyl	64		%	1	08/31/23	PS	30 - 130 %
% 2-Fluorophenol	61		%	1	08/31/23	PS	30 - 130 %
% Nitrobenzene-d5	72		%	1	08/31/23	PS	30 - 130 %
% Phenol-d5	66		%	1	08/31/23	PS	30 - 130 %
% Terphenyl-d14	63		%	1	08/31/23	PS	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Semi-Volatile Comment:

An elevated RL was reported due to low % solids; some compounds are evaluated below the lowest calibration standard.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director September 13, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Tim Myjak EKI Environmental & Water Inc 80 Eastern Blvd. Suite 5 Glastonbury, CT 06033

September 13, 2023

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/25/23	10:35
Location Code:	EKI	Received by:	SR1	08/25/23	13:43
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	C3-210 C30138				000004

Laboratory Data

SDG ID: GCO83124 Phoenix ID: CO83141

Project ID: C30138 HONEY HILL (C3-210)

Client ID:

TP-15(4-5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.69	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Arsenic	16.9	1.4	mg/Kg	1	09/09/23	CPP	SW6010D
Barium	162	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Beryllium	< 0.55	0.55	mg/Kg	1	09/09/23	CPP	SW6010D
Cadmium	2.39	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Chromium	27.1	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Copper	70.2	1.4	mg/kg	1	09/09/23	CPP	SW6010D
Mercury	0.13	0.06	mg/Kg	2	09/11/23	AL1	SW7471B
Nickel	15.4	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Lead	280	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Antimony	< 6.9	6.9	mg/Kg	1	09/09/23	CPP	SW6010D
Selenium	< 2.8	2.8	mg/Kg	1	09/09/23	CPP	SW6010D
Thallium	< 5.0	5.0	mg/Kg	1	09/09/23	CPP	SW6010D
Vanadium	25.6	0.69	mg/Kg	1	09/09/23	CPP	SW6010D
Zinc	640	14	mg/Kg	10	09/11/23	ΤН	SW6010D
Percent Solid	43		%		08/28/23	CV	SW846-%Solid
Mercury Digestion	Completed				09/11/23	AL/AL	SW7471B
Soil Extraction for SVOA	Completed				08/30/23	C/JDW	/ SW3545A
Extraction for PCB	Completed				08/29/23	/R/AC1/	⊿SW3540C
Total Metals Digest	Completed				08/28/23	P/AG	SW3050B
PCB (Soxhlet SW354)	<u>0C)</u>						
PCB-1016	ND	760	ug/Kg	10	08/31/23	SC	SW8082A
PCB-1221	ND	760	ug/Kg	10	08/31/23	SC	SW8082A
PCB-1232	ND	760	ug/Kg	10	08/31/23	SC	SW8082A
PCB-1242	ND	760	ug/Kg	10	08/31/23	SC	SW8082A
PCB-1248	ND	760	ug/Kg	10	08/31/23	SC	SW8082A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
PCB-1254	ND	760	ug/Kg	10	08/31/23	SC	SW8082A	
PCB-1260	ND	760	ug/Kg	10	08/31/23	SC	SW8082A	
PCB-1262	ND	760	ug/Kg	10	08/31/23	SC	SW8082A	
PCB-1268	ND	760	ug/Kg	10	08/31/23	SC	SW8082A	
QA/QC Surrogates								
% DCBP	66		%	10	08/31/23	SC	30 - 150 %	
% DCBP (Confirmation)	66		%	10	08/31/23	SC	30 - 150 %	
% TCMX	32		%	10	08/31/23	SC	30 - 150 %	
% TCMX (Confirmation)	29		%	10	08/31/23	SC	30 - 150 %	3
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	100	ug/Kg	1	08/31/23	PS	SW8270D	
1,2,4-Trichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
1,2-Dichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
1,2-Diphenylhydrazine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
1,3-Dichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
1,4-Dichlorobenzene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
2,2'-Oxybis(1-Chloropropane)	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
2,4,5-Trichlorophenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
2,4,6-Trichlorophenol	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
2,4-Dichlorophenol	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D	
2,4-Dimethylphenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
2,4-Dinitrophenol	ND	300	ug/Kg	1	08/31/23	PS	SW8270D	
2,4-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
2,6-Dinitrotoluene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
2-Chloronaphthalene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
2-Chlorophenol	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D	
2-Methylnaphthalene	ND	560	ug/Kg	1	08/31/23	PS	SW8270D	
2-Methylphenol (o-cresol)	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
2-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D	
2-Nitrophenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
3&4-Methylphenol (m&p-cresol)	ND	1700	ug/Kg	1	08/31/23	PS	SW8270D	
3,3'-Dichlorobenzidine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
3-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D	
4,6-Dinitro-2-methylphenol	ND	300	ug/Kg	1	08/31/23	PS	SW8270D	
4-Bromophenyl phenyl ether	ND	1700	ug/Kg	1	08/31/23	PS	SW8270D	
4-Chloro-3-methylphenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
4-Chloroaniline	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
4-Chlorophenyl phenyl ether	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
4-Nitroaniline	ND	300	ug/Kg	1	08/31/23	PS	SW8270D	
4-Nitrophenol	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Acenaphthene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Acenaphthylene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Acetophenone	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Aniline	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
Anthracene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Benz(a)anthracene	1600	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Benzidine	ND	200	ug/Kg	1	08/31/23	PS	SW8270D	
Benzo(a)pyrene	1400	1200	ug/Kg	1	08/31/23	PS	SW8270D	
Benzo(b)fluoranthene	3500	1200	ug/Kg	1	08/31/23	PS	SW8270D	

Parameter Result POL Units Dilution Date/Time By Reference Benzo(fillpreyriene ND 1000 ugrkg 1 08/31/23 PS SW82700 Benzo(fillprogramthene 1200 1200 ugrkg 1 08/31/23 PS SW82700 Benzyl huly phthalate ND 1200 ugrkg 1 08/31/23 PS SW82700 Bis(2-choroethyl)ether ND 1000 ugrkg 1 08/31/23 PS SW82700 Bis(2-choroethyl)ether ND 1000 ugrkg 1 08/31/23 PS SW82700 Dibenz(a/hantracene ND 1000 ugrkg 1 08/31/23 PS SW82700 Dibenz(a/hantracene ND 1000 ugrkg 1 08/31/23 PS SW82700 Dibenz(a/hantracene ND 1200 ugrkg 1 08/31/23 PS SW82700 Diverbylphthalate ND 1200 ugrkg 1	Cilent ID. 17 - 15(4-5)		RL/					
Banzo, (k) fluoranthene 1200 1200 ug/Kg 1 0.83/123 PS SW8270D Banzy louty phthalate ND 3300 ug/Kg 1 0.83/123 PS SW8270D Bis(2-chloroethoxy)methane ND 420 ug/Kg 1 0.83/123 PS SW8270D Bis(2-chloroethy)phthalate ND 1000 ug/Kg 1 0.83/123 PS SW8270D Sis(2-chloroethy)phthalate ND 1000 ug/Kg 1 0.83/123 PS SW8270D Disherz(a, h)anthracene ND 1000 ug/Kg 1 0.83/123 PS SW8270D Dienty phthalate ND 1200 ug/Kg 1 0.83/123 PS SW8270D Dienthylphthalate ND 1200 ug/Kg 1 0.83/123 PS SW8270D Din-butylphthalate ND 1200 ug/Kg 1 0.83/123 PS SW8270D Din-butylphthalate ND 1200 ug/Kg <	Parameter	Result		Units	Dilution	Date/Time	By	Reference
Banzo(k)fluoranthene1200ug/Kg108/31/23PSSW8270DBanzo(k)fluorantheneND3300ug/Kg108/31/23PSSW8270DBanzo(k)fluoranthox)methaneND1200ug/Kg108/31/23PSSW8270DBis(2-cholroethox)methaneND1000ug/Kg108/31/23PSSW8270DBis(2-cholroethox)methaneND1000ug/Kg108/31/23PSSW8270DDatabazole430200ug/Kg108/31/23PSSW8270DDibenz(a, h)anthraceneND1000ug/Kg108/31/23PSSW8270DDibenz(a, h)anthraceneND1200ug/Kg108/31/23PSSW8270DDibenz(a, h)phthalateND1200ug/Kg108/31/23PSSW8270DDi-n-bctylphthalateND1200ug/Kg108/31/23PSSW8270DDi-n-bctylphthalateND1200ug/Kg108/31/23PSSW8270DDi-n-bctylphthalateND1200ug/Kg108/31/23PSSW8270DDi-n-bctylphthalateND1200ug/Kg108/31/23PSSW8270DUoranteneND1200ug/Kg108/31/23PSSW8270DUoranteneND1000ug/Kg108/31/23PSSW8270DUoranteneND1000ug/Kg108/31/23PSSW8270D <td>Benzo(ghi)perylene</td> <td>ND</td> <td>1000</td> <td>ug/Kg</td> <td>1</td> <td>08/31/23</td> <td>PS</td> <td>SW8270D</td>	Benzo(ghi)perylene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
Benzyl bulyl phthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Bis(2-chiorethoxy)methane ND 1000 ug/Kg 1 08/31/23 PS SW8270D Bis(2-chiorethoxy)methane ND 1000 ug/Kg 1 08/31/23 PS SW8270D Bis(2-chiorethoxy)methane ND 1000 ug/Kg 1 08/31/23 PS SW8270D Chrone 2600 1200 ug/Kg 1 08/31/23 PS SW8270D Dibenz(a,h)anthracene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dimethylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dimethylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dimethylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Piorostylphthalate ND 1000 ug/Kg 1 <t< td=""><td>Benzo(k)fluoranthene</td><td>1200</td><td>1200</td><td>ug/Kg</td><td>1</td><td>08/31/23</td><td>PS</td><td>SW8270D</td></t<>	Benzo(k)fluoranthene	1200	1200	ug/Kg	1	08/31/23	PS	SW8270D
ND 420 ug/Kg 1 08/31/23 PS SW8270D Sis(2-chloroethyl)ether ND 1000 ug/Kg 1 08/31/23 PS SW8270D Sis(2-chloroethyl)ether ND 1000 ug/Kg 1 08/31/23 PS SW8270D Carbazole 430 200 ug/Kg 1 08/31/23 PS SW8270D Dibenz(a, h)anthracene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Dibenz(a, h)anthracene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dimethylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Din-octylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Uorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Uorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D <td>Benzoic acid</td> <td>ND</td> <td>3300</td> <td>ug/Kg</td> <td>1</td> <td>08/31/23</td> <td>PS</td> <td>SW8270D</td>	Benzoic acid	ND	3300	ug/Kg	1	08/31/23	PS	SW8270D
Bis (2-chloroethoxy)methane ND 420 ug/Kg 1 08/31/23 PS SW8270D Bis (2-chloroethy)lether ND 1000 ug/Kg 1 08/31/23 PS SW8270D Carbazole 430 200 ug/Kg 1 08/31/23 PS SW8270D Carbazole 430 200 ug/Kg 1 08/31/23 PS SW8270D Dibenz(a, h)anthracene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dientylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dimethylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Din-octylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Uorantene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Uorantene ND 1200 ug/Kg 1 08/31/23 PS	Benzyl butyl phthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Bis (2-chloroethyl)etherND1000ug/Kg100/31/23PSSV/8270DSis (2-chlylhexyl)phthalateND1000ug/Kg108/31/23PSSV/8270DChrysene26001200ug/Kg108/31/23PSSV/8270DDibenz (a, h)anthraceneND1000ug/Kg108/31/23PSSV/8270DDibenz (a, h)anthraceneND1000ug/Kg108/31/23PSSV/8270DDiethyl phthalateND1200ug/Kg108/31/23PSSV/8270DDin-butylphthalateND1200ug/Kg108/31/23PSSV/8270DDi-n-butylphthalateND1200ug/Kg108/31/23PSSV/8270DFluoranthene26001200ug/Kg108/31/23PSSV/8270DFluorantheneND1200ug/Kg108/31/23PSSV/8270DFluorantheneND1000ug/Kg108/31/23PSSV/8270DFluorantheneND200ug/Kg108/31/23PSSV/8270DFlexachlorobetzeneND1000ug/Kg108/31/23PSSV/8270DHexachlorocyclopentadieneND200ug/Kg108/31/23PSSV/8270DHexachlorocyclopentadieneND200ug/Kg108/31/23PSSV/8270DHexachlorocyclopentadieneND200ug/Kg108/31/23	Bis(2-chloroethoxy)methane	ND	420	ug/Kg	1	08/31/23	PS	SW8270D
Carbazole 430 200 ug/kg 1 08/31/23 PS SW8270D Chrysene 2600 1200 ug/kg 1 08/31/23 PS SW8270D Dibenz(a,h)anthracene ND 1000 ug/kg 1 08/31/23 PS SW8270D Dibenz(a,h)anthracene ND 1200 ug/kg 1 08/31/23 PS SW8270D Diethyl phthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-butylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-butylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Fluorane ND 1200 ug/kg 1 08/31/23 PS SW8270D Fluorane ND 1200 ug/kg 1 08/31/23 PS SW8270D Hexachlorobenzene ND 1000 ug/kg 1 08/31/23 PS	Bis(2-chloroethyl)ether	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
Chrysene 2600 1200 ug/kg 1 08/31/23 PS SW8270D Dibenz(a, h)anthracene ND 1000 ug/kg 1 08/31/23 PS SW8270D Dibenzofuran ND 200 ug/kg 1 08/31/23 PS SW8270D Dibentylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-tylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-tylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Fluoranthene 2600 1200 ug/kg 1 08/31/23 PS SW8270D Fluoranthene ND 1200 ug/kg 1 08/31/23 PS SW8270D Fluoranthene ND 1000 ug/kg 1 08/31/23 PS SW8270D Fluoranthene ND 1000 ug/kg 1 08/31/23 PS SW827	Bis(2-ethylhexyl)phthalate	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
Diberz(a, h)anthracene ND 1000 ug/kg 1 08/31/23 PS SW8270D Diberzofuran ND 200 ug/kg 1 08/31/23 PS SW8270D Dibertyl phthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-butyl phthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-butyl phthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Pluorantene ND 1200 ug/kg 1 08/31/23 PS SW8270D Horanthene ND 1200 ug/kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 200 ug/kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/kg 1 08/31/23 P	Carbazole	430	200	ug/Kg	1	08/31/23	PS	SW8270D
Dibenzofuran ND 200 ug/Kg 1 08/31/23 PS SW8270D Diethyl phthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dinn-brytylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Din-brytylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Din-brytylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Fluorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobenzene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 <td< td=""><td>Chrysene</td><td>2600</td><td>1200</td><td>ug/Kg</td><td>1</td><td>08/31/23</td><td>PS</td><td>SW8270D</td></td<>	Chrysene	2600	1200	ug/Kg	1	08/31/23	PS	SW8270D
Diethyl phthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Dimethyl phthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Din-butyl phthalate ND 1700 ug/Kg 1 08/31/23 PS SW8270D Din-cotyl phthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Fluoranthene 2600 1200 ug/Kg 1 08/31/23 PS SW8270D Fluorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobentane ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobenzene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Valtrosodin-phylamine ND 200 ug/Kg 1 08/31/23 <td< td=""><td>Dibenz(a,h)anthracene</td><td>ND</td><td>1000</td><td>ug/Kg</td><td>1</td><td>08/31/23</td><td>PS</td><td>SW8270D</td></td<>	Dibenz(a,h)anthracene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
Dimethylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Din-butylphthalate ND 1700 ug/kg 1 08/31/23 PS SW8270D Din-butylphthalate ND 1200 ug/kg 1 08/31/23 PS SW8270D Fluoranthene 2600 1200 ug/kg 1 08/31/23 PS SW8270D Fluoranthene ND 1200 ug/kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/kg 1 08/31/23 PS SW8270D Idexachlorobutadiene ND 1000 ug/kg 1 08/31/23 PS SW8270D idexachlorobutadiene ND 1000 ug/kg 1 08/31/23 PS SW8270D idexachlorobutadiene ND 1200 ug/kg 1 08/31/23	Dibenzofuran	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
Dimethylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Din-butylphthalate ND 1700 ug/Kg 1 08/31/23 PS SW8270D Din-octylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Fluorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1200 ug/Kg 1 08/31/23 PS SW8270D ND 1200 ug/Kg 1 08/31/23 PS SW8270D </td <td>Diethyl phthalate</td> <td>ND</td> <td>1200</td> <td>ug/Kg</td> <td>1</td> <td>08/31/23</td> <td>PS</td> <td>SW8270D</td>	Diethyl phthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Din-octy/phthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Fluoranthene 2600 1200 ug/Kg 1 08/31/23 PS SW8270D Fluorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorocyclopentadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachloroethane ND 1000 ug/Kg 1 08/31/23 PS SW8270D sophorone ND 740 ug/Kg 1 08/31/23 PS SW8270D valpthalene ND 200 ug/Kg 1 08/31/23 PS SW8270D v-Nitrosodimethylamine ND 200 ug/Kg 1 08/31/23 PS	Dimethylphthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Din-octylphthalate ND 1200 ug/Kg 1 08/31/23 PS SW8270D Fluoranthene 2600 1200 ug/Kg 1 08/31/23 PS SW8270D Fluoranthene ND 1200 ug/Kg 1 08/31/23 PS SW8270D texachlorobenzene ND 1000 ug/Kg 1 08/31/23 PS SW8270D texachlorobutadiene ND 200 ug/Kg 1 08/31/23 PS SW8270D texachlorocthane ND 1000 ug/Kg 1 08/31/23 PS SW8270D vaphthalene ND 1000 ug/Kg 1 08/31/23 PS SW8270D vaphthalene ND 1200 ug/Kg 1 08/31/23 PS SW8270D v-Nitrosodimethylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D v-Nitrosodimethylamine ND 200 ug/Kg 1 08/31/23 PS	Di-n-butylphthalate	ND	1700	ug/Kg	1	08/31/23	PS	SW8270D
Fluoranthene 2600 1200 ug/Kg 1 08/31/23 PS SW8270D Fluorene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobenzene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobenzene ND 200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobenzene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorocyclopentadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D hexachlorocyclopentadiene ND 1000 ug/Kg 1 08/31/23 PS SW8270D vestintbalene ND 1200 ug/Kg 1 08/31/23 PS SW8270D vestintbalene ND 200 ug/Kg 1 08/31/23 PS SW8270D vestintbalene ND 200 ug/Kg 1 08/31/23 PS	Di-n-octylphthalate	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorobenzene ND 1000 ug/Kg 1 08/31/23 PS SW8270D Hexachlorobutadiene ND 200 ug/Kg 1 08/31/23 PS SW8270D Hexachlorocyclopentadiene ND 840 ug/Kg 1 08/31/23 PS SW8270D Hexachloroethane ND 1000 ug/Kg 1 08/31/23 PS SW8270D sophorone ND 1000 ug/Kg 1 08/31/23 PS SW8270D sophorone ND 740 ug/Kg 1 08/31/23 PS SW8270D Vaphthalene ND 200 ug/Kg 1 08/31/23 PS SW8270D V-Nitrosodin-n-propylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D V-Nitrosodiphenylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Ventacoloronitrobenzene ND 1000 ug/Kg 1 08/31/23	Fluoranthene	2600	1200	ug/Kg	1	08/31/23	PS	SW8270D
Normality Normality <t< td=""><td>Fluorene</td><td>ND</td><td>1200</td><td>ug/Kg</td><td>1</td><td>08/31/23</td><td>PS</td><td>SW8270D</td></t<>	Fluorene	ND	1200	ug/Kg	1	08/31/23	PS	SW8270D
Hexachlorocyclopentadiene ND 840 ug/Kg 1 08/31/23 PS SW8270D Hexachloroethane ND 1000 ug/Kg 1 08/31/23 PS SW8270D Indeno(1,2,3-cd)pyrene ND 1000 ug/Kg 1 08/31/23 PS SW8270D sophorone ND 740 ug/Kg 1 08/31/23 PS SW8270D Valthalene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Valtrosodimethylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Valtrosodin-nyropylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Valtrosodiphenylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/Kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 1200 ug/Kg 1 08/31	Hexachlorobenzene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
HexachloroethaneND1000ug/Kg108/31/23PSSW8270DIndeno(1,2,3-cd)pyreneND1000ug/Kg108/31/23PSSW8270DsophoroneND740ug/Kg108/31/23PSSW8270DNaphthaleneND1200ug/Kg108/31/23PSSW8270DNitrobenzeneND200ug/Kg108/31/23PSSW8270DN-NitrosodimethylamineND200ug/Kg108/31/23PSSW8270DN-Nitrosodin-n-propylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DPentachloronitrobenzeneND140ug/Kg108/31/23PSSW8270DPentachlorophenol15001000ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND200ug/Kg108/31/23PSSW8270DPhenolND200ug/Kg108/31/23PSSW8270DQuyree40001200ug/Kg	Hexachlorobutadiene	ND	200	ug/Kg	1	08/31/23	PS	SW8270D
HexachloroethaneND1000ug/Kg108/31/23PSSW8270DIndeno(1,2,3-cd)pyreneND1000ug/Kg108/31/23PSSW8270DsophoroneND740ug/Kg108/31/23PSSW8270DNaphthaleneND1200ug/Kg108/31/23PSSW8270DNitrobenzeneND200ug/Kg108/31/23PSSW8270DN-NitrosodimethylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DPentachloronitrobenzeneND140ug/Kg108/31/23PSSW8270DPentachlorophenol15001000ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPhenolND200ug/Kg <td>Hexachlorocyclopentadiene</td> <td>ND</td> <td>840</td> <td>ug/Kg</td> <td>1</td> <td>08/31/23</td> <td>PS</td> <td>SW8270D</td>	Hexachlorocyclopentadiene	ND	840	ug/Kg	1	08/31/23	PS	SW8270D
ND 740 ug/kg 1 08/31/23 PS SW8270D Naphthalene ND 1200 ug/kg 1 08/31/23 PS SW8270D Nitrobenzene ND 200 ug/kg 1 08/31/23 PS SW8270D N-Nitrosodimethylamine ND 200 ug/kg 1 08/31/23 PS SW8270D N-Nitrosodinethylamine ND 200 ug/kg 1 08/31/23 PS SW8270D N-Nitrosodiphenylamine ND 200 ug/kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/kg 1 08/31/23 PS SW8270D Pentachlorophenol ND 1200 ug/kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/kg 1 08/31/23 PS SW8270D	Hexachloroethane	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
ND 740 ug/kg 1 08/31/23 PS SW8270D Naphthalene ND 1200 ug/kg 1 08/31/23 PS SW8270D Nitrobenzene ND 200 ug/kg 1 08/31/23 PS SW8270D N-Nitrosodimethylamine ND 200 ug/kg 1 08/31/23 PS SW8270D N-Nitrosodinethylamine ND 200 ug/kg 1 08/31/23 PS SW8270D N-Nitrosodiphenylamine ND 200 ug/kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/kg 1 08/31/23 PS SW8270D Pentachlorophenol ND 1200 ug/kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/kg 1 08/31/23 PS SW8270D	Indeno(1,2,3-cd)pyrene	ND	1000	ug/Kg	1	08/31/23	PS	SW8270D
NaphthaleneND1200ug/Kg108/31/23PSSW8270DNitrobenzeneND200ug/Kg108/31/23PSSW8270DN-NitrosodimethylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DPentachloronitrobenzeneND140ug/Kg108/31/23PSSW8270DPentachlorophenol15001000ug/Kg108/31/23PSSW8270DPentachlorophenol1200ug/Kg108/31/23PSSW8270DPentachlorophenolND1200ug/Kg108/31/23PSSW8270DPyrene40001200ug/Kg108/31/23PSSW8270DPyreneND200ug/Kg108/31/23PSSW8270DPyreneND200ug/Kg108/31/23PSSW8270DPyrene40001200ug/Kg108/31/23PSSW8270DPyreneND200ug/Kg108/31/23PS30 - 130 %% 2,4,6-Tribromophenol70%108/31/23PS30 - 130 %% 2-Fluorophenol58%108		ND	740		1	08/31/23	PS	SW8270D
NumberND200ug/Kg108/31/23PSSW8270DN-NitrosodimethylamineND200ug/Kg108/31/23PSSW8270DN-Nitrosodin-propylamineND200ug/Kg108/31/23PSSW8270DN-NitrosodiphenylamineND200ug/Kg108/31/23PSSW8270DPentachloronitrobenzeneND140ug/Kg108/31/23PSSW8270DPentachlorophenol15001000ug/Kg108/31/23PSSW8270DPhenanthreneND1200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPyrene40001200ug/Kg108/31/23PSSW8270DPyreneMD200ug/Kg108/31/23PSSW8270DPyreneMD200ug/Kg108/31/23PSSW8270DPyreneM001200ug/Kg108/31/23PSSW8270DPyreneMD200ug/Kg108/31/23PSSW8270DQACC SurrogatesND200ug/Kg108/31/23PS30 - 130 %% 2-Fluorobiphenyl62%108/31/23PS30 - 130 %% 2-Fluorobiphenyl58%108/31/23PS30 - 130 %% Nitrobenzene-d571%108/31/23PS3		ND	1200		1	08/31/23	PS	SW8270D
N-Nitrosodimethylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D N-Nitrosodin-n-propylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D N-Nitrosodiphenylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/Kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/Kg 1 08/31/23 PS SW8270D Phenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates ND 200 ug/Kg 1 08/31/23	Nitrobenzene	ND	200		1	08/31/23	PS	SW8270D
N-Nitrosodi-n-propylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D N-Nitrosodiphenylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene ND 200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates ////////////////////////////////////		ND	200		1	08/31/23	PS	SW8270D
N-Nitrosodiphenylamine ND 200 ug/Kg 1 08/31/23 PS SW8270D Pentachloronitrobenzene ND 140 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/Kg 1 08/31/23 PS SW8270D Phenanthrene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Phenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyridine ND 200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates	-	ND	200		1	08/31/23	PS	SW8270D
Pentachloronitrobenzene ND 140 ug/Kg 1 08/31/23 PS SW8270D Pentachlorophenol 1500 1000 ug/Kg 1 08/31/23 PS SW8270D Phenanthrene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Phenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Phenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyridine ND 200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates ND 200 ug/Kg 1 08/31/23 PS 30 - 130 % % 2,4,6-Tribromophenol 70 % 1 08/31/23 PS 30 - 130 % % 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 %		ND	200		1	08/31/23	PS	SW8270D
Pentachlorophenol15001000ug/Kg108/31/23PSSW8270DPhenanthreneND1200ug/Kg108/31/23PSSW8270DPhenolND1200ug/Kg108/31/23PSSW8270DPyrene40001200ug/Kg108/31/23PSSW8270DPyridineND200ug/Kg108/31/23PSSW8270DQA/QC SurrogatesVVND200ug/Kg108/31/23PSSW8270D% 2,4,6-Tribromophenol70%108/31/23PS30 - 130 %ND% 2,4,6-Tribromophenol58%108/31/23PS30 - 130 %% 2-Fluorophenol58%108/31/23PS30 - 130 %% 2-Fluorophenol58%108/31/23PS30 - 130 %% Nitrobenzene-d571%108/31/23PS30 - 130 %% Phenol-d564%108/31/23PS30 - 130 %	Pentachloronitrobenzene	ND	140		1	08/31/23	PS	SW8270D
Phenanthrene ND 1200 ug/Kg 1 08/31/23 PS SW8270D Phenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyridine ND 200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates ND 200 ug/Kg 1 08/31/23 PS SW8270D % 2,4,6-Tribromophenol 70 % 1 08/31/23 PS 30 - 130 % % 2,-Fluorobiphenyl 62 % 1 08/31/23 PS 30 - 130 % % 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 % % Nitrobenzene-d5 71 % 1 08/31/23 PS 30 - 130 % % Phenol-d5 64 % <	Pentachlorophenol	1500	1000		1	08/31/23	PS	SW8270D
Phenol ND 1200 ug/Kg 1 08/31/23 PS SW8270D Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyridine ND 200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates SW8270D % 2,4,6-Tribromophenol 70 % 1 08/31/23 PS 30 - 130 % % 2,4,6-Tribromophenol 62 % 1 08/31/23 PS 30 - 130 % % 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 % % 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 % % Nitrobenzene-d5 71 % 1 08/31/23 PS 30 - 130 % % Phenol-d5 64 % 1 08/31/23 PS 30 - 130 %	Phenanthrene	ND	1200		1		PS	SW8270D
Pyrene 4000 1200 ug/Kg 1 08/31/23 PS SW8270D Pyridine ND 200 ug/Kg 1 08/31/23 PS SW8270D QA/QC Surrogates	Phenol	ND	1200		1	08/31/23	PS	SW8270D
PyridineND200ug/Kg108/31/23PSSW8270DGA/QC Surrogates% 2,4,6-Tribromophenol70%108/31/23PS30 - 130 %% 2-Fluorobiphenyl62%108/31/23PS30 - 130 %% 2-Fluorophenol58%108/31/23PS30 - 130 %% 2-Fluorophenol58%108/31/23PS30 - 130 %% Nitrobenzene-d571%108/31/23PS30 - 130 %% Phenol-d564%108/31/23PS30 - 130 %	Pyrene	4000	1200		1	08/31/23	PS	SW8270D
QA/QC Surrogates % 2,4,6-Tribromophenol 70 % 1 08/31/23 PS 30 - 130 % % 2-Fluorobiphenyl 62 % 1 08/31/23 PS 30 - 130 % % 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 % % 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 % % Nitrobenzene-d5 71 % 1 08/31/23 PS 30 - 130 % % Phenol-d5 64 % 1 08/31/23 PS 30 - 130 %	Pyridine	ND	200		1	08/31/23	PS	SW8270D
% 2,4,6-Tribromophenol70%108/31/23PS30 - 130 %% 2-Fluorobiphenyl62%108/31/23PS30 - 130 %% 2-Fluorophenol58%108/31/23PS30 - 130 %% Nitrobenzene-d571%108/31/23PS30 - 130 %% Phenol-d564%108/31/23PS30 - 130 %	-							
% 2-Fluorobiphenyl62%108/31/23PS30 - 130 %% 2-Fluorophenol58%108/31/23PS30 - 130 %% Nitrobenzene-d571%108/31/23PS30 - 130 %% Phenol-d564%108/31/23PS30 - 130 %	% 2,4,6-Tribromophenol	70		%	1	08/31/23	PS	30 - 130 %
% 2-Fluorophenol 58 % 1 08/31/23 PS 30 - 130 % % Nitrobenzene-d5 71 % 1 08/31/23 PS 30 - 130 % % Phenol-d5 64 % 1 08/31/23 PS 30 - 130 %	% 2-Fluorobiphenyl	62		%	1	08/31/23	PS	30 - 130 %
% Nitrobenzene-d5 71 % 1 08/31/23 PS 30 - 130 % % Phenol-d5 64 % 1 08/31/23 PS 30 - 130 %	% 2-Fluorophenol	58			1	08/31/23	PS	30 - 130 %
% Phenol-d5 64 % 1 08/31/23 PS 30 - 130 %	% Nitrobenzene-d5	71			1	08/31/23	PS	30 - 130 %
	% Phenol-d5	64			1			
% Terphenyl-d14 59 % 1 08/31/23 PS 30 - 130 %	% Terphenyl-d14	59		%	1	08/31/23	PS	30 - 130 %

Project ID: C30138 HONE Client ID: TP-15(4-5)	EY HILL (C3		Pł	noeni	x I.D.: CO83141		
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

=

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Semi-Volatile Comment:

An elevated RL was reported due to low % solids; some compounds are evaluated below the lowest calibration standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 13, 2023 Reviewed and Released by: Ethan Lee, Project Manager

QA/QC Report

Selenium

Thallium

Vanadium

Comment:

Silver

Zinc

September 13, 2023

QA/QC Data

SDG I.D.: GCO83124

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

35

35

35

35

35

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 696382 (mg/kg),	QC Sam	ple No:	CO8300	1 2X (C	O83128	, CO83	3136, CC	083138	, CO83	140, CC	083141)		
Mercury - Soil Comment:	BRL	0.02	0.04	<0.03	NC	95.5	101	5.6	78.9	70.2	11.7	70 - 130	30	m
Additional Mercury criteria: LCS a	icceptanc	e range f	for waters	is 80-120	% and fo	or soils i	s 70-130'	%. MS a	cceptan	ice range	e is 75-1	25%.		
QA/QC Batch 694458 (mg/kg),	QC Sam	ple No:	CO8424	0 (CO83	3128, C	08313	6, CO83	138, C	D83140), CO83	141)			
ICP Metals - Soil														
Antimony	BRL	3.3	<2.0	<3.7	NC	105	102	2.9	86.0			75 - 125	35	
Arsenic	BRL	0.67	3.61	3.26	NC	114	110	3.6	97.6			75 - 125	35	
Barium	BRL	0.33	89.1	85.7	3.90	116	113	2.6	105			75 - 125	35	
Beryllium	BRL	0.27	0.69	0.59	NC	113	110	2.7	95.4			75 - 125	35	
Cadmium	BRL	0.33	1.20	1.05	NC	114	113	0.9	99.6			75 - 125	35	
Chromium	BRL	0.33	22.7	20.1	12.1	119	113	5.2	99.6			75 - 125	35	
Copper	BRL	0.67	30.4	32.1	5.40	111	108	2.7	98.7			75 - 125	35	
Lead	BRL	0.33	16.2	12.7	24.2	109	107	1.9	99.5			75 - 125	35	
Nickel	BRL	0.33	16.9	14.9	12.6	115	112	2.6	98.2			75 - 125	35	

NC

NC

NC

17.4

2.80

117

120

112

118

120

113

118

108

114

116

3.5

1.7

3.6

3.4

3.4

98.3

105

94.4

94.1

102

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

BRL

BRL

BRL

BRL

BRL

1.3

0.33

3.0

0.33

0.67

<1.6

<0.40

<0.8

67.0

48.9

<1.5

<0.37

<3.4

56.3

50.3

m = This parameter is outside laboratory MS/MSD specified recovery limits.

QA/QC Report

September 13, 2023

QA/QC Data

SDG I.D.: GC083124

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 694915 (mg/Kg), (QC San	nple No: CO73854 (CO83136, C	O8314	0)						
TPH by GC (Extractable F	roduc	ts <u>) - Soil</u>								
Ext. Petroleum H.C. (C9-C36)	ND	50	119	107	10.6	100	101	1.0	60 - 120	30
% COD (surr)	88	%	123	106	14.8	Intf	Intf	NC	50 - 150	30
% Terphenyl (surr)	91	%	106	104	1.9	114	89	24.6	50 - 150	30
Comment:										
Additional surrogate criteria: LCS a normalized based on the alkane ca		ce range is 60-120% MS acceptance.	e range	50-150%	6. The E	TPH/DR	O LCS F	nas beel	n	
QA/QC Batch 695184 (ug/Kg), C	2C Sam	ple No: CO81918 10X (CO8313	6, CO8	3140)						
Chlorinated Herbicides - S	Soil									
2,4,5-T	ND	130	70	59	17.1	74	77	4.0	40 - 140	30
2,4,5-TP (Silvex)	ND	130	75	63	17.4	76	80	5.1	40 - 140	30
2,4-D	ND	250	79	69	13.5	85	86	1.2	40 - 140	30
2,4-DB	ND	2500	61	51	17.9	62	66	6.3	40 - 140	30
Dalapon	ND	130	65	77	16.9	90	74	19.5	40 - 140	30
Dicamba	ND	130	72	69	4.3	69	73	5.6	40 - 140	30
Dichloroprop	ND	130	82	69	17.2	90	94	4.3	40 - 140	30
Dinoseb	ND	130	93	102	9.2	98	94	4.2	40 - 140	30
% DCAA (Surrogate Rec)	78	%	89	74	18.4	89	94	5.5	30 - 150	30
% DCAA (Surrogate Rec) (Confirm	92	%	105	81	25.8	103	105	1.9	30 - 150	30
Comment:										
Additional criteria: LCS acceptance	e range is	s 40-140% MS acceptance range 3	D-150%.							
QA/QC Batch 694703 (ug/Kg), C	2C Sam	ple No: CO82999 10X (CO8314	1)							
Polychlorinated Biphenyls			,							
PCB-1016	ND	170	97			62	56	10.2	40 - 140	30
PCB-1221	ND	170							40 - 140	30
PCB-1232	ND	170							40 - 140	30
PCB-1242	ND	170							40 - 140	30
PCB-1248	ND	170							40 - 140	30
PCB-1254	ND	170							40 - 140	30
PCB-1260	ND	170	97			136	130	4.5	40 - 140	30
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	99	%	101			71	72	1.4	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	102	%	98			70	92	27.2	30 - 150	30
% TCMX (Surrogate Rec)	95	%	96			49	48	2.1	30 - 150	30
% TCMX (Surrogate Rec) (Confirm Comment:	89	%	90			50	49	2.0	30 - 150	30
This batch consists of a Diank 1 C										

This batch consists of a Blank, LCS, MS and MSD.

<u>QA/QC Data</u>

		Blk		CS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank	RL		%	%	RPD	%	%	RPD	Limits	Limits	
QA/QC Batch 695110 (ug/Kg), C	2C Sam	ple No:	CO87087 10X (CO83136, 0	208	3140)							
Polychlorinated Biphenyls	- Soil											
PCB-1016	ND	170	1	01	98	3.0	53	58	9.0	40 - 140	30	
PCB-1221	ND	170								40 - 140	30	
PCB-1232	ND	170								40 - 140	30	
PCB-1242	ND	170								40 - 140	30	
PCB-1248	ND	170								40 - 140	30	
PCB-1254	ND	170								40 - 140	30	
PCB-1260	ND	170	(91	93	2.2	52	60	14.3	40 - 140	30	
PCB-1262	ND	170								40 - 140	30	
PCB-1268	ND	170								40 - 140	30	
% DCBP (Surrogate Rec)	108	%	1	13	110	2.7	59	68	14.2	30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	126	%	1	25	117	6.6	59	68	14.2	30 - 150	30	
% TCMX (Surrogate Rec)	92	%	(97	88	9.7	43	55	24.5	30 - 150	30	
% TCMX (Surrogate Rec) (Confirm	94	%	(99	92	7.3	44	52	16.7	30 - 150	30	
QA/QC Batch 694705 (ug/Kg), C	2C Sam	ple No:	CO83169 2X (CO83136)									
Pesticides - Soil		•	. ,									
4,4' -DDD	ND	1.7		60	70	15.4	56	63	11.8	40 - 140	30	
4,4' -DDE	ND	1.7		56	70	22.2	56	63	11.8	40 - 140	30	
4,4' -DDT	ND	1.7		54	70	25.8	57	69	19.0	40 - 140	30	
a-BHC	ND	1.0	Į	55	65	16.7	50	56	11.3	40 - 140	30	
Alachlor	ND	3.3	٦	NA	NA	NC	NA	NA	NC	40 - 140	30	
Aldrin	ND	1.0	Į	57	68	17.6	54	62	13.8	40 - 140	30	
b-BHC	ND	1.0	Į	57	72	23.3	57	109	62.7	40 - 140	30	r
Chlordane	ND	33	Į	58	81	33.1	64	72	11.8	40 - 140	30	r
d-BHC	ND	3.3	4	47	70	39.3	54	66	20.0	40 - 140	30	r
Dieldrin	ND	1.0	Į	56	75	29.0	56	73	26.4	40 - 140	30	
Endosulfan I	ND	3.3	Į	57	67	16.1	53	59	10.7	40 - 140	30	
Endosulfan II	ND	3.3	Į	59	68	14.2	52	61	15.9	40 - 140	30	
Endosulfan sulfate	ND	3.3	Į	54	52	3.8	39	47	18.6	40 - 140	30	
Endrin	ND	3.3	Į	54	71	27.2	54	64	16.9	40 - 140	30	
Endrin aldehyde	ND	3.3	Į	50	73	37.4	50	56	11.3	40 - 140	30	r
Endrin ketone	ND	3.3	Į	57	70	20.5	53	64	18.8	40 - 140	30	
g-BHC	ND	1.0	Į	56	67	17.9	53	68	24.8	40 - 140	30	
Heptachlor	ND	3.3	Į	53	66	21.8	52	89	52.5	40 - 140	30	r
Heptachlor epoxide	ND	3.3		55	58	5.3	46	50	8.3	40 - 140	30	
Methoxychlor	ND	3.3		55	74	29.5	54	65	18.5	40 - 140	30	
Toxaphene	ND	130		٨V	NA	NC	NA	NA	NC	40 - 140	30	
% DCBP	72	%		57	71	21.9	52	59	12.6	30 - 150	30	
% DCBP (Confirmation)	72	%		55	51	7.5	37	49	27.9	30 - 150	30	
% TCMX	65	%		53	63	17.2	52	56	7.4	30 - 150	30	
% TCMX (Confirmation)	63	%		51	56	9.3	47	56	17.5	30 - 150	30	
QA/QC Batch 695399 (ug/Kg), C	2C Sam	ple No:	CO85322 2X (CO83140)									
Pesticides - Soil												
4,4' -DDD	ND	1.7		00	103	3.0	110	113	2.7	40 - 140	30	
4,4' -DDE	ND	1.7		96	101	5.1	108	112	3.6	40 - 140	30	
4,4' -DDT	ND	1.7		94	97	3.1	105	107	1.9	40 - 140	30	
a-BHC	ND	1.0		92	88	4.4	93	99	6.3	40 - 140	30	
Alachlor	ND	3.3		٨V	NA	NC	NA	NA	NC	40 - 140	30	
Aldrin	ND	1.0		97	95	2.1	99	102	3.0	40 - 140	30	
b-BHC	ND	1.0	8	89	92	3.3	99	103	4.0	40 - 140	30	

<u>QA/QC Data</u>

SDG I.D.: GCO83124

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Chlordane	ND	33	95	95	0.0	101	105	3.9	40 - 140	30	
d-BHC	ND	3.3	59	53	10.7	91	90	1.1	40 - 140	30	
Dieldrin	ND	1.0	94	98	4.2	104	108	3.8	40 - 140	30	
Endosulfan I	ND	3.3	91	99	8.4	106	112	5.5	40 - 140	30	
Endosulfan II	ND	3.3	95	101	6.1	110	114	3.6	40 - 140	30	
Endosulfan sulfate	ND	3.3	88	92	4.4	99	104	4.9	40 - 140	30	
Endrin	ND	3.3	92	100	8.3	106	109	2.8	40 - 140	30	
Endrin aldehyde	ND	3.3	83	85	2.4	90	91	1.1	40 - 140	30	
Endrin ketone	ND	3.3	95	100	5.1	108	111	2.7	40 - 140	30	
g-BHC	ND	1.0	103	96	7.0	102	100	2.0	40 - 140	30	
Heptachlor	ND	3.3	89	94	5.5	98	101	3.0	40 - 140	30	
Heptachlor epoxide	ND	3.3	88	101	13.8	109	110	0.9	40 - 140	30	
Methoxychlor	ND	3.3	93	103	10.2	111	115	3.5	40 - 140	30	
Toxaphene	ND	130	NA	NA	NC	NA	NA	NC	40 - 140	30	
% DCBP	90	%	87	94	7.7	101	103	2.0	30 - 150	30	
% DCBP (Confirmation)	87	%	93	100	7.3	112	106	5.5	30 - 150	30	
% TCMX	89	%	88	84	4.7	81	84	3.6	30 - 150	30	
% TCMX (Confirmation)	85	%	91	85	6.8	85	83	2.4	30 - 150	30	
QA/QC Batch 694946 (ug/kg), Semivolatiles - Soil	QC Samp	ble No: CO83417 (CO8313	36, CO83138	, CO831	140, CC	083141))				
1,2,4,5-Tetrachlorobenzene	ND	230	53	52	1.9	71	61	15.2	40 - 140	30	
1,2,4-Trichlorobenzene	ND	230	53 54	53	1.9	69	62	10.7	40 - 140	30	
1,2-Dichlorobenzene	ND	180	54	55	0.0	65	59	9.7	40 - 140	30	
1,2-Diphenylhydrazine	ND	230	51	52	1.9	70	61	^{9.7} 13.7	40 - 140	30	
1,3-Dichlorobenzene	ND	230	50	50	0.0	63	57	10.0	40 - 140	30	
1,4-Dichlorobenzene	ND	230	49	50	2.0	62	57	8.4	40 - 140	30	
2,2'-Oxybis(1-Chloropropane)	ND	230	54	53	1.9	69	62	10.7	40 - 140	30	
2,4,5-Trichlorophenol	ND	230	58	58	0.0	85	70	19.4	40 - 140	30	
2,4,6-Trichlorophenol	ND	130	50 59	58	1.7	85	72	16.6	30 - 130	30	
2,4-Dichlorophenol	ND	130	59	57	3.4	82	71	14.4	30 - 130	30	
2,4-Dimethylphenol	ND	230	56	55	1.8	78	70	10.8	30 - 130	30	
2,4-Dinitrophenol	ND	230			8.3	93	76	20.1	30 - 130	30	
2,4-Dinitrotoluene			63				10				
			63 69	58 67			88				
	ND	130	69	67	2.9	104	88 80	16.7	30 - 130	30	
2,6-Dinitrotoluene	ND ND	130 130	69 65	67 62	2.9 4.7	104 95	80	16.7 17.1	30 - 130 40 - 140	30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene	ND ND ND	130 130 230	69 65 54	67 62 55	2.9 4.7 1.8	104 95 75	80 65	16.7 17.1 14.3	30 - 130 40 - 140 40 - 140	30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND	130 130 230 230	69 65 54 56	67 62 55 54	2.9 4.7 1.8 3.6	104 95 75 74	80 65 66	16.7 17.1 14.3 11.4	30 - 130 40 - 140 40 - 140 30 - 130	30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene	ND ND ND ND	130 130 230 230 230	69 65 54 56 54	67 62 55 54 54	2.9 4.7 1.8 3.6 0.0	104 95 75 74 73	80 65 66 64	16.7 17.1 14.3 11.4 13.1	30 - 130 40 - 140 40 - 140 30 - 130 40 - 140	30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol)	ND ND ND ND ND	130 130 230 230 230 230	69 65 54 56 54 54	67 62 55 54 54 54 52	2.9 4.7 1.8 3.6 0.0 3.8	104 95 75 74 73 74	80 65 66 64 66	16.7 17.1 14.3 11.4 13.1 11.4	30 - 130 40 - 140 40 - 140 30 - 130 40 - 140 40 - 140	30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline	ND ND ND ND	130 130 230 230 230 230 230 330	69 65 54 56 54	67 62 55 54 54 52 72	2.9 4.7 1.8 3.6 0.0 3.8 2.8	104 95 75 74 73 74 97	80 65 66 64 66 84	16.7 17.1 14.3 11.4 13.1 11.4 14.4	30 - 130 40 - 140 40 - 140 30 - 130 40 - 140 40 - 140 40 - 140	30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol	ND ND ND ND ND ND	130 130 230 230 230 230 230 330 230	69 65 54 56 54 54 70	67 62 55 54 54 52 72 59	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3	104 95 75 74 73 74 97 85	80 65 66 64 66 84 79	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3	30 - 130 40 - 140 40 - 140 30 - 130 40 - 140 40 - 140	30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline	ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 230	69 65 54 56 54 54 70 61	67 62 55 54 54 52 72 59 55	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6	104 95 75 74 73 74 97 85 78	80 65 66 64 66 84	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7	30 - 130 40 - 140 40 - 140 30 - 130 40 - 140 40 - 140 40 - 140	30 30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol)	ND ND ND ND ND ND ND	130 130 230 230 230 230 230 330 230	69 65 54 56 54 70 61 57	67 62 55 54 54 52 72 59	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3	104 95 75 74 73 74 97 85	80 65 66 64 66 84 79 68	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3	30 - 130 40 - 140 30 - 130 40 - 140 40 - 140 40 - 140 40 - 140 30 - 130	30 30 30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline	ND ND ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 230 130 330	69 65 54 56 54 70 61 57 57	67 62 55 54 54 52 72 59 55 59 62	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2	104 95 74 73 74 97 85 78 73 76	80 65 64 64 84 79 68 60	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1	30 - 130 40 - 140 30 - 130 40 - 140 40 - 140 40 - 140 40 - 140 30 - 130 40 - 140	30 30 30 30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol	ND ND ND ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 230 130 330 230	69 65 54 56 54 70 61 57 57 56	67 62 55 54 52 72 59 55 59 62 65	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4	104 95 74 73 74 97 85 78 73 76 99	80 65 64 66 84 79 68 60 66	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6	30 - 130 40 - 140 30 - 130 40 - 140 40 - 140 40 - 140 40 - 140 30 - 130 40 - 140 40 - 140	30 30 30 30 30 30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	ND ND ND ND ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 130 330 230 230 230	69 65 54 56 54 70 61 57 57 56 69	67 62 55 54 52 72 59 55 59 62 65 56	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2 6.0 1.8	104 95 74 73 74 97 85 78 78 73 76 99 82	80 65 64 66 84 79 68 60 66 83	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6 18.7	$\begin{array}{c} 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 30 - 140 \\ 30 - 130 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	ND ND ND ND ND ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 130 330 230 230 230 230	69 65 54 56 54 70 61 57 57 56 69 57	67 62 55 54 52 72 59 55 59 62 65 56 58	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2 6.0 1.8 3.4	104 95 74 73 74 97 85 78 78 73 76 99 82 83	80 65 64 66 84 79 68 60 66 83 68	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6 18.7 15.6	$\begin{array}{c} 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30 30	
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline	ND ND ND ND ND ND ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 130 330 230 230 230	69 65 54 56 54 70 61 57 57 56 69 57 60	67 62 55 54 52 72 59 55 59 62 65 56	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2 6.0 1.8	104 95 74 73 74 97 85 78 78 73 76 99 82	80 65 64 66 84 79 68 60 66 83 68 71	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6 18.7	$\begin{array}{c} 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30 30 3	1
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether	ND ND ND ND ND ND ND ND ND ND ND ND	130 130 230 230 230 230 230 230 230 230 230 2	69 65 54 56 54 70 61 57 57 56 69 57 60 39 57	67 62 55 54 52 72 59 55 59 62 65 56 58 50	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2 6.0 1.8 3.4 24.7 0.0	104 95 74 73 74 97 85 78 73 76 99 82 83 44 80	80 65 64 66 84 79 68 60 66 83 68 71 45 67	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6 18.7 15.6 2.2 17.7	$\begin{array}{c} 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30 30 3	1
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline	ND ND ND ND ND ND ND ND ND ND ND ND ND N	130 130 230 230 230 230 230 230 230 2	69 65 54 56 54 70 61 57 57 56 69 57 60 39 57 61	67 62 55 54 52 72 59 55 59 62 65 56 58 50 57 61	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2 6.0 1.8 3.4 24.7	104 95 74 73 74 97 85 78 73 76 99 82 83 44 80 92	80 65 64 66 84 79 68 60 66 83 68 71 45 67 81	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6 18.7 15.6 2.2 17.7 12.7	$\begin{array}{c} 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30 30 3	I
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	130 130 230 230 230 230 230 230 230 230 230 2	69 65 54 56 54 70 61 57 57 56 69 57 60 39 57	67 62 55 54 52 72 59 55 59 62 65 56 58 50 57	2.9 4.7 1.8 3.6 0.0 3.8 2.8 3.3 3.6 3.4 10.2 6.0 1.8 3.4 24.7 0.0 0.0	104 95 74 73 74 97 85 78 73 76 99 82 83 44 80	80 65 64 66 84 79 68 60 66 83 68 71 45 67	16.7 17.1 14.3 11.4 13.1 11.4 14.4 7.3 13.7 19.5 14.1 17.6 18.7 15.6 2.2 17.7	$\begin{array}{c} 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 30 - 130 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \\ 40 - 140 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30 30 3	I

SDG I.D.: GCO83124

Parameter	Blank	Bik RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Acetophenone	ND	230	51	51	0.0	66	60	9.5	40 - 140	30	
Aniline	ND	330	39	42	7.4	45	39	14.3	40 - 140	30	l,m
Anthracene	ND	230	55	55	0.0	74	67	9.9	40 - 140	30	
Benz(a)anthracene	ND	230	53	53	0.0	69	76	9.7	40 - 140	30	
Benzidine	ND	330	14	22	44.4	<10	<10	NC	40 - 140	30	l,m,r
Benzo(a)pyrene	ND	130	60	61	1.7	76	83	8.8	40 - 140	30	
Benzo(b)fluoranthene	ND	160	56	55	1.8	78	84	7.4	40 - 140	30	
Benzo(ghi)perylene	ND	230	57	57	0.0	55	68	21.1	40 - 140	30	
Benzo(k)fluoranthene	ND	230	53	53	0.0	76	69	9.7	40 - 140	30	
Benzoic Acid	ND	670	75	69	8.3	109	97	11.7	30 - 130	30	
Benzyl butyl phthalate	ND	230	58	57	1.7	79	66	17.9	40 - 140	30	
Bis(2-chloroethoxy)methane	ND	230	55	55	0.0	70	64	9.0	40 - 140	30	
Bis(2-chloroethyl)ether	ND	130	52	51	1.9	66	60	9.5	40 - 140	30	
Bis(2-ethylhexyl)phthalate	ND	230	59	58	1.7	81	66	20.4	40 - 140	30	
Carbazole	ND	230	56	56	0.0	75	63	17.4	40 - 140	30	
Chrysene	ND	230	57	56	1.8	73	76	4.0	40 - 140	30	
Dibenz(a,h)anthracene	ND	130	57	56	1.8	58	62	6.7	40 - 140	30	
Dibenzofuran	ND	230	54	54	0.0	77	67	13.9	40 - 140	30	
Diethyl phthalate	ND	230	56	55	1.8	77	66	15.4	40 - 140	30	
Dimethylphthalate	ND	230	56	56	0.0	79	67	16.4	40 - 140	30	
Di-n-butylphthalate	ND	670	57	56	1.8	76	64	17.1	40 - 140	30	
Di-n-octylphthalate	ND	230	63	60	4.9	87	72	18.9	40 - 140	30	
Fluoranthene	ND	230	56	54	3.6	56	80	35.3	40 - 140	30	r
Fluorene	ND	230	55	55	0.0	75	63	17.4	40 - 140	30	'
Hexachlorobenzene	ND	130	54	54	0.0	75	64	15.8	40 - 140	30	
Hexachlorobutadiene	ND	230	57	55	3.6	72	65	10.2	40 - 140	30	
Hexachlorocyclopentadiene	ND	230	54	53	1.9	44	34	25.6	40 - 140	30	m
Hexachloroethane	ND	130	51	51	0.0	63	57	10.0	40 - 140	30	
Indeno(1,2,3-cd)pyrene	ND	230	58	57	1.7	58	73	22.9	40 - 140	30	
Isophorone	ND	130	50	49	2.0	66	60	9.5	40 - 140	30	
Naphthalene	ND	230	53	53	0.0	70	63	10.5	40 - 140	30	
Nitrobenzene	ND	130	53	56	1.8	75	69	8.3	40 - 140	30	
N-Nitrosodimethylamine	ND	230	50	50	0.0	61	56	8.5	40 - 140	30	
N-Nitrosodi-n-propylamine	ND	130	50	52	0.0	67	62	7.8	40 - 140	30	
N-Nitrosodiphenylamine	ND	130	55	55	0.0	77	65	16.9	40 - 140	30	
Pentachloronitrobenzene	ND	230	60	58	3.4	88	74	17.3	40 - 140	30	
Pentachlorophenol	ND	230	72	69	4.3	113	91	21.6	30 - 130	30	
Phenanthrene	ND	130	54	53	1.9	63	63	0.0	40 - 140	30	
Phenol	ND	230	55	53 54	1.8	71	65	8.8	30 - 130	30	
Pyrene	ND	230	57	55	3.6	61	80	27.0	30 - 130	30	
Pyridine	ND	230	38	43	12.3	46	43	6.7	40 - 140	30	
% 2,4,6-Tribromophenol	66	%	53	43 55	3.7	40 81	43 73	10.4	40 - 140 30 - 130	30 30	I
% 2-Fluorobiphenyl	62	%	53	55 52	3.7 1.9	71	61	15.2	30 - 130	30 30	
% 2-Fluorophenol	58	%	51	52 51	1.9	66	60	9.5	30 - 130	30 30	
% 2-Fluorophenol % Nitrobenzene-d5	58 63	%	52 55	51 54	1.9	00 73	68				
% Phenol-d5	63 62	%	55 54	54 54	0.0	73 69	68 64	7.1 7.5	30 - 130 30 - 130	30 30	
% Terphenyl-d14	62 62	%	54 53	54 53	0.0	69 72	60	7.5 18.2	30 - 130 30 - 130	30 30	
Comment:	02	70	00	55	0.0	12	00	10.2	30 - 130	30	

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 694887 (ug/kg), (OC Sam	ole No: CO84614 (CO83128)									
<u>Semivolatiles - Soil</u>											
1,2,4,5-Tetrachlorobenzene		230	57	51	11.1	62	56	10.2	40 - 140	30	
	ND ND	230	55	49	11.1	60	53	10.2	40 - 140	30 30	
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	ND	180		49 42	13.3	52	55 44	12.4	40 - 140	30 30	
1,2-Diphenylhydrazine	ND	230	40 62	42 59	5.0	69	44 64	7.5	40 - 140	30	
1,3-Dichlorobenzene	ND	230	48	40	18.2	51	42	7.5 19.4	40 - 140	30	
1,4-Dichlorobenzene	ND	230	48	40	18.2	50	42	17.4	40 - 140	30	
2,2'-Oxybis(1-Chloropropane)	ND	230	52	46	12.2	57	49	15.1	40 - 140	30	
2,4,5-Trichlorophenol	ND	230	67	63	6.2	72	65	10.2	40 - 140	30	
2,4,6-Trichlorophenol	ND	130	69	65	6.0	73	67	8.6	30 - 130	30	
2,4-Dichlorophenol	ND	130	64	59	8.1	70	62	12.1	30 - 130	30	
2,4-Dimethylphenol	ND	230	66	60	9.5	73	67	8.6	30 - 130	30	
2,4-Dinitrophenol	ND	230	63	67	6.2	68	58	15.9	30 - 130	30	
2,4-Dinitrotoluene	ND	130	74	70	5.6	81	75	7.7	30 - 130	30	
2,6-Dinitrotoluene	ND	130	68	65	4.5	77	71	8.1	40 - 140	30	
2-Chloronaphthalene	ND	230	62	57	8.4	68	63	7.6	40 - 140	30	
2-Chlorophenol	ND	230	55	50	9.5	62	53	15.7	30 - 130	30	
2-Methylnaphthalene	ND	230	60	55	8.7	66	60	9.5	40 - 140	30	
2-Methylphenol (o-cresol)	ND	230	58	53	9.0	65	58	11.4	40 - 140	30	
2-Nitroaniline	ND	330	103	98	5.0	111	103	7.5	40 - 140	30	
2-Nitrophenol	ND	230	63	56	11.8	66	57	14.6	40 - 140	30	
3&4-Methylphenol (m&p-cresol)	ND	230	63	59	6.6	73	65	11.6	30 - 130	30	
3,3'-Dichlorobenzidine	ND	130	56	34	48.9	59	52	12.6	40 - 140	30	l,r
3-Nitroaniline	ND	330	38	31	20.3	39	33	16.7	40 - 140	30	l,m
4,6-Dinitro-2-methylphenol	ND	230	68	67	1.5	75	66	12.8	30 - 130	30	.,
4-Bromophenyl phenyl ether	ND	230	67	63	6.2	73	69	5.6	40 - 140	30	
4-Chloro-3-methylphenol	ND	230	67	65	3.0	75	69	8.3	30 - 130	30	
4-Chloroaniline	ND	230	20	15	28.6	19	15	23.5	40 - 140	30	l,m
4-Chlorophenyl phenyl ether	ND	230	66	63	4.7	73	68	7.1	40 - 140	30	
4-Nitroaniline	ND	230	67	64	4.6	74	69	7.0	40 - 140	30	
4-Nitrophenol	ND	230	81	79	2.5	92	83	10.3	30 - 130	30	
Acenaphthene	ND	230	62	58	6.7	68	63	7.6	30 - 130	30	
Acenaphthylene	ND	130	58	53	9.0	63	59	6.6	40 - 140	30	
Acetophenone	ND	230	54	50	7.7	60	53	12.4	40 - 140	30	
Aniline	ND	330	22	17	25.6	61	12	134.2	40 - 140	30	l,m,r
Anthracene	ND	230	65	61	6.3	71	67	5.8	40 - 140	30	
Benz(a)anthracene	ND	230	63	61	3.2	71	65	8.8	40 - 140	30	
Benzidine	ND	330	<10	<10	NC	<10	<10	NC	40 - 140	30	l,m
Benzo(a)pyrene	ND	130	70	69	1.4	77	72	6.7	40 - 140	30	
Benzo(b)fluoranthene	ND	160	65	65	0.0	73	68	7.1	40 - 140	30	
Benzo(ghi)perylene	ND	230	69	67	2.9	75	70	6.9	40 - 140	30	
Benzo(k)fluoranthene	ND	230	64	62	3.2	68	64	6.1	40 - 140	30	
Benzoic Acid	ND	670	73	73	0.0	32	30	6.5	30 - 130	30	
Benzyl butyl phthalate	ND	230	74	71	4.1	82	76	7.6	40 - 140	30	
Bis(2-chloroethoxy)methane	ND	230	60	55	8.7	66	59	11.2	40 - 140	30	
Bis(2-chloroethyl)ether	ND	130	51	45	12.5	57	48	17.1	40 - 140	30	
Bis(2-ethylhexyl)phthalate	ND	230	74	72	2.7	83	76	8.8	40 - 140	30	
Carbazole	ND	230	68	64	6.1	73	69	5.6	40 - 140	30	
Chrysene	ND	230	69	65	6.0	73	69	5.6	40 - 140	30	
Dibenz(a,h)anthracene	ND	130	68	67	1.5	75	70	6.9	40 - 140	30	
Dibenzofuran	ND	230	64	60	6.5	70	65	7.4	40 - 140	30	

SDG I.D.: GCO83124

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Diethyl phthalate	ND	230	67	64	4.6	75	69	8.3	40 - 140	30	
Dimethylphthalate	ND	230	66	62	6.3	73	68	7.1	40 - 140	30	
Di-n-butylphthalate	ND	670	73	69	5.6	80	74	7.8	40 - 140	30	
Di-n-octylphthalate	ND	230	77	74	4.0	86	80	7.2	40 - 140	30	
Fluoranthene	ND	230	68	64	6.1	73	69	5.6	40 - 140	30	
Fluorene	ND	230	66	62	6.3	73	67	8.6	40 - 140	30	
Hexachlorobenzene	ND	130	69	66	4.4	82	77	6.3	40 - 140	30	
Hexachlorobutadiene	ND	230	55	48	13.6	58	52	10.9	40 - 140	30	
Hexachlorocyclopentadiene	ND	230	50	50	0.0	60	53	12.4	40 - 140	30	
Hexachloroethane	ND	130	48	41	15.7	51	43	17.0	40 - 140	30	
Indeno(1,2,3-cd)pyrene	ND	230	69	68	1.5	77	71	8.1	40 - 140	30	
Isophorone	ND	130	55	49	11.5	60	54	10.5	40 - 140	30	
Naphthalene	ND	230	56	50	11.3	61	55	10.3	40 - 140	30	
Nitrobenzene	ND	130	53	49	7.8	60	54	10.5	40 - 140	30	
N-Nitrosodimethylamine	ND	230	47	38	21.2	47	40	16.1	40 - 140	30	T
N-Nitrosodi-n-propylamine	ND	130	57	53	7.3	65	57	13.1	40 - 140	30	
N-Nitrosodiphenylamine	ND	130	64	60	6.5	72	66	8.7	40 - 140	30	
Pentachloronitrobenzene	ND	230	65	62	4.7	72	69	4.3	40 - 140	30	
Pentachlorophenol	ND	230	64	64	0.0	71	64	10.4	30 - 130	30	
Phenanthrene	ND	130	65	61	6.3	70	66	5.9	40 - 140	30	
Phenol	ND	230	60	55	8.7	66	58	12.9	30 - 130	30	
Pyrene	ND	230	68	64	6.1	73	69	5.6	30 - 130	30	
Pyridine	ND	230	47	43	8.9	42	39	7.4	40 - 140	30	m
% 2,4,6-Tribromophenol	71	%	68	66	3.0	74	68	8.5	30 - 130	30	
% 2-Fluorobiphenyl	57	%	58	53	9.0	63	60	4.9	30 - 130	30	
% 2-Fluorophenol	53	%	52	47	10.1	57	49	15.1	30 - 130	30	
% Nitrobenzene-d5	51	%	49	46	6.3	56	51	9.3	30 - 130	30	
% Phenol-d5	58	%	56	52	7.4	63	58	8.3	30 - 130	30	
% Terphenyl-d14 Comment:	64	%	62	59	5.0	68	65	4.5	30 - 130	30	

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 694659 (ug/kg), QC Sample No: CO83136 (CO83136)

Volatiles - Soil (Low Level)

1,1,1,2-Tetrachloroethane	ND	5.0	111	113	1.8	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	96	103	7.0	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	3.0	97	101	4.0	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	94	99	5.2	70 - 130	30
1,1-Dichloroethane	ND	5.0	97	105	7.9	70 - 130	30
1,1-Dichloroethene	ND	5.0	86	92	6.7	70 - 130	30
1,1-Dichloropropene	ND	5.0	98	103	5.0	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	103	103	0.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	92	95	3.2	70 - 130	30
1,2-Dichloroethane	ND	5.0	94	99	5.2	70 - 130	30
1,2-Dichloropropane	ND	5.0	108	112	3.6	70 - 130	30
1,3-Dichloropropane	ND	5.0	96	99	3.1	70 - 130	30
2,2-Dichloropropane	ND	5.0	94	99	5.2	70 - 130	30
2-Hexanone	ND	25	98	100	2.0	70 - 130	30
4-Methyl-2-pentanone	ND	25	103	106	2.9	70 - 130	30
Acetone	ND	10	73	79	7.9	70 - 130	30
Acrylonitrile	ND	5.0	89	92	3.3	70 - 130	30
Benzene	ND	1.0	100	104	3.9	70 - 130	30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Bromochloromethane	ND	5.0	93	100	7.3				70 - 130	30
Bromodichloromethane	ND	5.0	108	112	3.6				70 - 130	30
Bromoform	ND	5.0	118	119	0.8				70 - 130	30
Bromomethane	ND	5.0	85	90	5.7				70 - 130	30
Carbon Disulfide	ND	5.0	95	100	5.1				70 - 130	30
Carbon tetrachloride	ND	5.0	102	107	4.8				70 - 130	30
Chlorobenzene	ND	5.0	100	103	3.0				70 - 130	30
Chloroethane	ND	5.0	85	93	9.0				70 - 130	30
Chloroform	ND	5.0	94	100	6.2				70 - 130	30
Chloromethane	ND	5.0	115	124	7.5				70 - 130	30
cis-1,2-Dichloroethene	ND	5.0	96	102	6.1				70 - 130	30
cis-1,3-Dichloropropene	ND	5.0	108	112	3.6				70 - 130	30
Dibromochloromethane	ND	3.0	114	115	0.9				70 - 130	30
Dibromomethane	ND	5.0	93	97	4.2				70 - 130	30
Dichlorodifluoromethane	ND	5.0	84	91	8.0				70 - 130	30
Ethylbenzene	ND	1.0	98	101	3.0				70 - 130	30
m&p-Xylene	ND	2.0	95	98	3.1				70 - 130	30
Methyl ethyl ketone	ND	5.0	93	102	9.2				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	86	100	15.1				70 - 130	30
Methylene chloride	ND	5.0	83	87	4.7				70 - 130	30
o-Xylene	ND	2.0	100	103	3.0				70 - 130	30
Styrene	ND	5.0	96	100	4.1				70 - 130	30
Tetrachloroethene	ND	5.0	102	105	2.9				70 - 130	30
Tetrahydrofuran (THF)	ND	5.0	99	106	6.8				70 - 130	30
Toluene	ND	1.0	99	104	4.9				70 - 130	30
trans-1,2-Dichloroethene	ND	5.0	87	96	9.8				70 - 130	30
trans-1,3-Dichloropropene	ND	5.0	110	114	3.6				70 - 130	30
Trichloroethene	ND	5.0	96	99	3.1				70 - 130	30
Trichlorofluoromethane	ND	5.0	93	99	6.3				70 - 130	30
Trichlorotrifluoroethane	ND	5.0	100	105	4.9				70 - 130	30
Vinyl chloride	ND	5.0	93	102	9.2				70 - 130	30
% 1,2-dichlorobenzene-d4	96	%	101	101	0.0				70 - 130	30
% Bromofluorobenzene	99	%	98	97	1.0				70 - 130	30
% Dibromofluoromethane	99	%	95	98	3.1				70 - 130	30
% Toluene-d8	93	%	103	103	0.0				70 - 130	30
Comment:										

The Low Level MS/MSD are not reported for this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 694659H (ug/kg), QC Sample No: CO83136 50X (CO83136 (50X) , CO83140 (50X))

Volatiles - Soil (High Level)

1,2,3-Trichlorobenzene	ND	250	104	102	1.9	84	97	14.4	70 - 130	30
1,2,3-Trichloropropane	ND	250	101	93	8.2	79	90	13.0	70 - 130	30
1,2,4-Trichlorobenzene	ND	250	102	102	0.0	84	96	13.3	70 - 130	30
1,2,4-Trimethylbenzene	ND	250	99	106	6.8	92	103	11.3	70 - 130	30
1,2-Dichlorobenzene	ND	250	103	105	1.9	89	101	12.6	70 - 130	30
1,3,5-Trimethylbenzene	ND	250	98	106	7.8	92	104	12.2	70 - 130	30
1,3-Dichlorobenzene	ND	250	99	104	4.9	89	101	12.6	70 - 130	30
1,4-Dichlorobenzene	ND	250	101	106	4.8	90	102	12.5	70 - 130	30
2-Chlorotoluene	ND	250	95	103	8.1	89	100	11.6	70 - 130	30
2-Isopropyltoluene	ND	250	97	106	8.9	90	103	13.5	70 - 130	30
4-Chlorotoluene	ND	250	96	102	6.1	87	99	12.9	70 - 130	30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Bromobenzene	ND	250	100	104	3.9	87	101	14.9	70 - 130	30	
Hexachlorobutadiene	ND	250	101	109	7.6	92	107	15.1	70 - 130	30	
Isopropylbenzene	ND	250	96	105	9.0	92	104	12.2	70 - 130	30	
Naphthalene	ND	250	105	97	7.9	78	92	16.5	70 - 130	30	
n-Butylbenzene	ND	250	101	112	10.3	95	106	10.9	70 - 130	30	
n-Propylbenzene	ND	250	97	107	9.8	92	104	12.2	70 - 130	30	
p-Isopropyltoluene	ND	250	98	107	8.8	92	103	11.3	70 - 130	30	
sec-Butylbenzene	ND	250	96	107	10.8	91	104	13.3	70 - 130	30	
tert-Butylbenzene	ND	250	95	105	10.0	89	102	13.6	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	250	137	124	10.0	91	109	18.0	70 - 130	30	I.
% 1,2-dichlorobenzene-d4	96	%	103	100	3.0	103	102	1.0	70 - 130	30	
% Bromofluorobenzene	99	%	99	97	2.0	96	98	2.1	70 - 130	30	
% Dibromofluoromethane	100	%	100	94	6.2	97	94	3.1	70 - 130	30	
% Toluene-d8	93	%	104	103	1.0	103	103	0.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 694618 (ug/kg), QC Sample No: CO84206 (CO83140)

Volatiles - Soil (Low Level)

1,1,1,2-Tetrachloroethane	ND	5.0	112	112	0.0	108	104	3.8	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	101	103	2.0	99	98	1.0	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	102	103	1.0	104	98	5.9	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	100	104	3.9	99	95	4.1	70 - 130	30	
1,1-Dichloroethane	ND	5.0	104	104	0.0	101	100	1.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0	93	93	0.0	87	88	1.1	70 - 130	30	
1,1-Dichloropropene	ND	5.0	104	106	1.9	102	100	2.0	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	100	103	3.0	94	89	5.5	70 - 130	30	
1,2-Dibromoethane	ND	5.0	96	98	2.1	95	91	4.3	70 - 130	30	
1,2-Dichloroethane	ND	5.0	99	103	4.0	98	95	3.1	70 - 130	30	
1,2-Dichloropropane	ND	5.0	112	116	3.5	112	109	2.7	70 - 130	30	
1,3-Dichloropropane	ND	5.0	100	101	1.0	100	96	4.1	70 - 130	30	
2,2-Dichloropropane	ND	5.0	97	96	1.0	90	93	3.3	70 - 130	30	
2-Hexanone	ND	25	102	106	3.8	98	91	7.4	70 - 130	30	
4-Methyl-2-pentanone	ND	25	107	114	6.3	105	100	4.9	70 - 130	30	
Acetone	ND	10	77	78	1.3	46	67	37.2	70 - 130	30	m,r
Acrylonitrile	ND	5.0	94	94	0.0	88	87	1.1	70 - 130	30	
Benzene	ND	1.0	106	109	2.8	104	102	1.9	70 - 130	30	
Bromochloromethane	ND	5.0	98	97	1.0	96	94	2.1	70 - 130	30	
Bromodichloromethane	ND	5.0	110	113	2.7	108	105	2.8	70 - 130	30	
Bromoform	ND	5.0	109	114	4.5	103	101	2.0	70 - 130	30	
Bromomethane	ND	5.0	88	87	1.1	83	81	2.4	70 - 130	30	
Carbon Disulfide	ND	5.0	100	101	1.0	93	93	0.0	70 - 130	30	
Carbon tetrachloride	ND	5.0	104	103	1.0	97	97	0.0	70 - 130	30	
Chlorobenzene	ND	5.0	105	105	0.0	102	99	3.0	70 - 130	30	
Chloroethane	ND	5.0	90	89	1.1	83	85	2.4	70 - 130	30	
Chloroform	ND	5.0	99	101	2.0	97	96	1.0	70 - 130	30	
Chloromethane	ND	5.0	129	125	3.1	109	110	0.9	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	102	103	1.0	99	97	2.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	111	113	1.8	107	105	1.9	70 - 130	30	
Dibromochloromethane	ND	3.0	111	113	1.8	108	104	3.8	70 - 130	30	
Dibromomethane	ND	5.0	97	100	3.0	98	92	6.3	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	101	98	3.0	81	79	2.5	70 - 130	30	

SDG I.D.: GCO83124

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Ethylbenzene	ND	1.0	103	103	0.0	100	97	3.0	70 - 130	30
m&p-Xylene	ND	2.0	101	100	1.0	91	89	2.2	70 - 130	30
Methyl ethyl ketone	ND	5.0	103	101	2.0	90	87	3.4	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	91	92	1.1	87	85	2.3	70 - 130	30
Methylene chloride	ND	5.0	89	88	1.1	84	83	1.2	70 - 130	30
o-Xylene	ND	2.0	104	103	1.0	102	99	3.0	70 - 130	30
Styrene	ND	5.0	101	102	1.0	96	93	3.2	70 - 130	30
Tetrachloroethene	ND	5.0	107	110	2.8	104	100	3.9	70 - 130	30
Tetrahydrofuran (THF)	ND	5.0	106	111	4.6	100	99	1.0	70 - 130	30
Toluene	ND	1.0	106	109	2.8	105	102	2.9	70 - 130	30
trans-1,2-Dichloroethene	ND	5.0	93	92	1.1	89	86	3.4	70 - 130	30
trans-1,3-Dichloropropene	ND	5.0	110	113	2.7	105	102	2.9	70 - 130	30
Trichloroethene	ND	5.0	102	105	2.9	100	97	3.0	70 - 130	30
Trichlorofluoromethane	ND	5.0	102	99	3.0	92	93	1.1	70 - 130	30
Trichlorotrifluoroethane	ND	5.0	107	104	2.8	98	99	1.0	70 - 130	30
Vinyl chloride	ND	5.0	102	102	0.0	90	91	1.1	70 - 130	30
% 1,2-dichlorobenzene-d4	96	%	103	101	2.0	101	100	1.0	70 - 130	30
% Bromofluorobenzene	97	%	99	98	1.0	97	96	1.0	70 - 130	30
% Dibromofluoromethane	96	%	97	96	1.0	96	97	1.0	70 - 130	30
% Toluene-d8 Comment:	94	%	103	104	1.0	103	103	0.0	70 - 130	30

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. m = This parameter is outside laboratory MS/MSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 13, 2023

Criteria: CT: GAM, RC

State: CT

Sample Criteria Exceedances Report

GCO83124 - EKI

State:	СТ						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CO83136	\$8270-SMR	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1800	490	1000	1000	ug/Kg
CO83136	\$8270-SMR	Benzo(b)fluoranthene	CT / RSR GA (mg/kg) / Semivolatiles	1800	490	1000	1000	ug/Kg
CO83136	\$8270-SMR	Carbazole	CT / RSR GA,GAA (mg/kg) / APS Organics	270	200	200	200	ug/Kg
CO83136	\$PEST_SMR	Chlordane	CT / RSR GA (mg/kg) / Pesticides/TPH	140	71	66	66	ug/Kg
CO83136	\$PEST_SMR	Chlordane	CT / RSR GA,GAA (mg/kg) / APS Organics	140	71	66	66	ug/Kg
CO83136	AS-SM	Arsenic	CT / RSR DEC RES (mg/kg) / Inorganics	16.9	1.5	10	10	mg/Kg
CO83138	AS-SM	Arsenic	CT / RSR DEC RES (mg/kg) / Inorganics	12.1	0.77	10	10	mg/Kg
CO83140	\$8270-SMR	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1100	1000	1000	1000	ug/Kg
CO83140	\$8270-SMR	Benzo(b)fluoranthene	CT / RSR GA (mg/kg) / Semivolatiles	1100	1000	1000	1000	ug/Kg
CO83140	\$PEST_SMR	Chlordane	CT / RSR GA (mg/kg) / Pesticides/TPH	150	78	66	66	ug/Kg
CO83140	\$PEST_SMR	Chlordane	CT / RSR GA,GAA (mg/kg) / APS Organics	150	78	66	66	ug/Kg
CO83140	AS-SM	Arsenic	CT / RSR DEC RES (mg/kg) / Inorganics	37.0	1.7	10	10	mg/Kg
CO83141	\$8270-SMR	Pentachlorophenol	CT / RSR GA (mg/kg) / Semivolatiles	1500	1000	1000	1000	ug/Kg
CO83141	\$8270-SMR	Carbazole	CT / RSR GA,GAA (mg/kg) / APS Organics	430	200	200	200	ug/Kg
CO83141	\$8270-SMR	Benz(a)anthracene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1600	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Benz(a)anthracene	CT / RSR GA (mg/kg) / Semivolatiles	1600	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Chrysene	CT / RSR GA,GAA (mg/kg) / APS Organics	2600	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	3500	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Benzo(b)fluoranthene	CT / RSR GA (mg/kg) / Semivolatiles	3500	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Benzo(k)fluoranthene	CT / RSR GA (mg/kg) / Semivolatiles	1200	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Benzo(a)pyrene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1400	1200	1000	1000	ug/Kg
CO83141	\$8270-SMR	Benzo(a)pyrene	CT / RSR GA (mg/kg) / Semivolatiles	1400	1200	1000	1000	ug/Kg
CO83141	AS-SM	Arsenic	CT / RSR DEC RES (mg/kg) / Inorganics	16.9	1.4	10	10	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

CULUT DEPUNY

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc.

Project Location: C30138 HONEY HILL (C3-210)

Laboratory Sample ID(s): CO83128,

Client: EKI Environmental & Water Inc Project Number: Sampling Date(s): 8/25/2023

CO83136, CO83138, CO83140, CO83141

List RCP Methods Used (e.g., 8260, 8270, et cetera)

6010, 7470/7471, 8081, 8082, 8151, 8260, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	□ Yes ☑ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: PEST Narration, SVOA Narration, VOA Narration.	🗆 Yes 🗹 No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	✓ Yes □ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

SDG Comments

Temperature above 6C:

The samples were received in a cooler with ice packs. The samples were delivered to the Laboratory within a short period of time after sample collection. Therefore no significant bias is suspected.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID84 08/31/23-1

Keith Aloisa, Chemist 08/31/23

CO83136 (10X), CO83140 (10X)

The initial calibration (ET_717AI) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (831A003_4) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 694915 (CO73854)

CO83136, CO83140

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Herbicide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD2 09/05/23-1

Jeff Bucko, Chemist 09/05/23

CO83136 (10X), CO83140 (10X)

The initial calibration (HRB822AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (HRB822BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds: Samples: CO83136 Preceding CC 905B003 - 2,4-DB (12) -20%L (15%), Dalapon (1) 18%H (15%), Dinoseb 25%H (15%)

Succeeding CC 905B015 - Dinoseb 30%H (15%) Samples: CO83140 Preceding CC 905B015 - Dinoseb 30%H (15%)

Succeeding CC 905B015 - Dinoseb 30%H (15%)

QC (Batch Specific):

Batch 695184 (CO81918)

CO83136, CO83140

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

Herbicide Narration

Additional criteria: LCS acceptance range is 40-140% MS acceptance range 30-150%.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 09/11/23 20:54

Alexander Latka, Chemist 09/11/23

CO83128, CO83136, CO83138, CO83140, CO83141

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 696382 (CO83001)

CO83128, CO83136, CO83138, CO83140, CO83141

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS-2 09/09/23 11:59 Cindy Pearce, Tina Hall, Chemist 09/09/23

CO83128, CO83136, CO83138, CO83140, CO83141

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS-2 09/11/23 11:29

Cindy Pearce, Tina Hall, Chemist 09/11/23

CO83140, CO83141

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Certification Report

September 13, 2023

SDG I.D.: GCO83124

ICP Metals Narration

Batch 694458 (CO84240)

CO83128, CO83136, CO83138, CO83140, CO83141

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 35% with the following exceptions: None.

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD7 08/31/23-1

Saadia Chudary, Chemist 08/31/23

CO83141 (10X)

The initial calibration (PC0808AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0808BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD7 09/01/23-1

Saadia Chudary, Chemist 09/01/23

CO83136 (10X), CO83140 (10X)

The initial calibration (PC0808AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0808BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 694703 (CO82999)

CO83141

All LCS recoveries were within 40 - 140 with the following exceptions: None. This batch consists of a Blank, LCS, MS and MSD.

Batch 695110 (CO87087)

CO83136, CO83140

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 694705 (Samples: CO83136): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (d-BHC, Endrin aldehyde)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, therefore there may be variability in the reported result. (Chlordane)

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

PEST Narration

Instrument:

AU-ECD4 08/30/23-1

Adam Werner, Chemist 08/30/23

CO83136 (2X)

The initial calibration (PS0821AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS0821BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:

Samples: CO83136

Preceding CC 830B041 - None.

Succeeding CC 830B054 - b-BHC 21%H (20%), Endrin aldehyde 22%H (20%)

AU-ECD4 09/05/23-1

Adam Werner, Chemist 09/05/23

CO83140 (2X)

The initial calibration (PS0901AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS0901BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:None.

QC (Batch Specific):

Batch 694705 (CO83169)

CO83136

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: Chlordane(33.1%), d-BHC(39.3%), Endrin aldehyde(37.4%)

Batch 695399 (CO85322)

CO83140

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. **QC Batch 694887 (Samples: CO83128): ----**

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (3,3"-Dichlorobenzidine, N-Nitrosodimethylamine)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (3,3"-Dichlorobenzidine)

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (3-Nitroaniline, 4-Chloroaniline, Aniline, Benzidine)

QC Batch 694946 (Samples: CO83136, CO83138, CO83140, CO83141): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (4-Chloroaniline, Pyridine)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Benzidine)

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (Aniline, Benzidine) Instrument:

CHEM06 08/30/23-2 Adam Werner, Chemist 08/30/23

CO83136 (1X), CO83138 (1X), CO83140 (1X), CO83141 (1X)

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM06/6_SPLIT_0830):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.064 (0.1), Hexachlorobenzene 0.086 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/0830_19-6_SPLIT_0830):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.066 (0.1), Hexachlorobenzene 0.084 (0.1)

The following compounds did not meet minimum response factors: None.

CHEM07 08/30/23-1 Matt Richard, Chemist 08/30/23

CO83128 (1X)

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

SVOA Narration

were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM07/7_SPLIT_0824):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.064 (0.1), Hexachlorobenzene 0.086 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM07/0830_04-7_SPLIT_0824):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.068 (0.1), Hexachlorobenzene 0.086 (0.1)

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 694887 (CO84614)

CO83128

All LCS recoveries were within 40 - 140 with the following exceptions: 3-Nitroaniline(38%), 4-Chloroaniline(20%), Aniline(22%), Benzidine(<10%)

All LCSD recoveries were within 40 - 140 with the following exceptions: 3,3'-Dichlorobenzidine(34%), 3-Nitroaniline(31%), 4-Chloroaniline(15%), Aniline(17%), Benzidine(<10%), N-Nitrosodimethylamine(38%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: 3,3'-Dichlorobenzidine(48.9%)

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Batch 694946 (CO83417)

CO83136, CO83138, CO83140, CO83141

All LCS recoveries were within 40 - 140 with the following exceptions: 4-Chloroaniline(39%), Aniline(39%), Benzidine(14%), Pyridine(38%)

All LCSD recoveries were within 40 - 140 with the following exceptions: Benzidine(22%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: Benzidine(44.4%)

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 694659H: -----

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (trans-1,4-dichloro-2-butene) Instrument:

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

VOA Narration

CHEM18 08/28/23-1

Jane Li, Chemist 08/28/23

CO83136 (1X, 50X), CO83140 (50X)

Initial Calibration Evaluation (CHEM18/VT-M080923P):

97% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-chloropropane 25% (20%), Bromoform 21% (20%), trans-1,4-dichloro-2-butene 34% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM18/0828_02-VT-M080923P):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: trans-1,4-dichloro-2-butene 32%H (30%)

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

CHEM18 08/28/23-2

Jane Li, Chemist 08/28/23

CO83140 (1X)

Initial Calibration Evaluation (CHEM18/VT-M080923P):

97% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-chloropropane 25% (20%), Bromoform 21% (20%) The following compounds did not meet Table 4 recommended minimum response factors: None. The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM18/0828_36-VT-M080923P):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

QC (Batch Specific):

Batch 694618 (CO84206)

CHEM18 8/28/2023-2

CO83140(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

Batch 694659 (CO83136) CHEM18 8/28/2023-1

CO83136(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

The Low Level MS/MSD are not reported for this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

RCP Certification Report

September 13, 2023

SDG I.D.: GCO83124

VOA Narration

QC (Site Specific):

Batch 694659H (CO83136)

CHEM18 8/28/2023-1

CO83136(50X), CO83140(50X)

All LCS recoveries were within 70 - 130 with the following exceptions: trans-1,4-dichloro-2-butene(137%)

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 70 - 130 with the following exceptions: None.

All MSD recoveries were within 70 - 130 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

Data Delivery/Contact Options:	Project P.O: C3-2 (0 This section MUST be completed with Bottle Quantities:		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									Data Format	CS-1/RCGW-1	Data Package Data Package Tier II Checklist* Phoenix Std	
Fax: Phone	an ey Hill (C3-210) aK (Thu) ar (10 evicanis). Com accounting (20 EK) consult. com)		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	() () () () () () () () () () () () () (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	333	50		2 ve		CI MA Cr Cert DCP Certification	GW-1 GW-2	C G GW-3 C S-2 S-3 SW Protecti	State where samples were collected:
CT/MA/RI CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: makrina@phoenixtabs.com Fax (860) 645-0823 Client Services (860) 645-1102	H W LA												I/C DEC	GA Leachability G G Cachability G G CB Leachability C G CB Leachability C G CB -GW C C C C C C C C C C C C C C C C C C C	I
CT/MA/RI CHAIN OF CUS 587 East Middle Tumpike, P.O. Box 370 Email: makrina@phoenixlabs.com Client Services (860)	Project: Report to: Invoice to: Quote #	-0il		115	41.26	30	4.35 0110	NS SV	4/SP	00101	0:05	Date: Time: Ax hx122 1315	13:4	Turnaround Time: Turnaround Time: 1 1 Day* Standard 2 2 Days* Other 3 3 Days* Other 5 5 Days* Other	* SURCHARGES MAY APPLY
ANIII		ntification Date: 3 25 Water WW=Waste Water D=Solid W=Wipe OIL=Oil	e Date Sampled	201 5212 1 03			5	6	20	· ·	>	id by: 1010 M Chr.		30 durys	lled as such in
ENIX S	Heney Hu	Sampler's Client Sample - Information - Identification Signature Date: 3 23 Matrix Code: DW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid Water Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid X = (Other)	ē	TP-2(1-2) 5 TP-2(1-3)		TP-6(1-2)	TP-6 (2-3)	8	T1-0(1-2)		TP-12(2-3)	Fleet	Ē	Comments, Special Requirements or Regulations: Hold all survives for	•MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.
PHOE Environmental	Customer: Address:	Sampler's Signature Matrix Code: DWarrix Code: RW=Raw Water SE=5 B=Bulk L=Liquid X=	PHOENIX USE ONLY SAMPLE #	83124 83125	83126	82128	83139	83121	83132	<u>x3355</u>	72/255	Relinquished by: Method A manual	H. COVERNUI)	hments, Special R Hold a	*MS/MSD are considered site samp accordance with the prices guoted

.

. 19**80** C.E

X CTIMARI CHAIN OF CUSTODY RECORD Texa manages (C10840 Texa manages (C10840) Texa manages (C10840) Texa manages (C	Data Delivery/Contact Options:	ect P.O: C3 - 24 0 This section MUST be completed with Bottle Quantifies.		All of the set of the							-		Deta Format Excel PDF		□ Other Data Package □ Tier II Checklist*	 Full Data Package* Phoenix Std Other 	* SURCHARGE APPLIES
人気の CTIMARI CHAIN OF CUSTODY RECORD Stat Mode Turnple, P.O. Box 370, Mandester, T0004 Email: makine@ponentable.com Factor 1004 Wunj Hill Froject Hunn, Hill Wunj Hill Froject Hunn, Hill Munj Hill Project Hunn, Hill Munj Hill Project Hunn, Hill Mung Hill Project Hunn, Hill Mung Hill Report to: Hunn, Hill Mund Hill Project Hunn, Hill Barnie Time Barn <	Fax: Phone Email:	م م		(2 + + + + + + + + + + + + + + + + + + +	332	1 +			3				MCP Certificati GW-1	GW-2	GW-3 S-1 S-1		amples were collected:
CT Ser CT Se	STODY RECORD 570, Manchester, CT 06040 Fax (860) 645-0823 0) 645-1102	Hill Reconting											o				<u>'</u>
X 587 attories, Inc. 587 attories, Inc. 587 Information - Identification 10 Information - Identification 235/2 Information - Identification 10 Information - Identification 235/2 Information - Identification 10 Information	AA/RI CHAIN OF CL st Middle Turnpike, P.O. Box (ail: makrina@phoenixlabs.com Client Services (86	Project: Report to: Invoice to: Quote #	Cold Hard Cold Cold Cold Cold Cold Cold Cold Col	a construction									13:15 R		Standard		
ENTX Sample Intomation Identification with Huny Hill (Other) Sold Second Sample Identification Matrix TP - 13 (4 - 5) 500 TP -			2	e el	10:00	02;01	02:01	0 K301	2h, 45	10.50	00',11 1	50,11 202	Date: ()25)23	CZ/51A		 	
	ENIX S		ient Sample - Information - Identifit MC-Ground Water SW=Surface Wate ediment SL=Sludge S=Soil SD=Sc (Other)	Customer Sample Samp Identification Matrix	13-12-3) 3(4-5)	Ξ		25	1-1		8	B	AAC Acces		equirements or Regulations:	Source Ron	ed site samples and will be billed a

Ð

Cooler: Yes of No	CUSTODY RECORD Temp4.0° c Pg of tox 370, Manchester, CT 06040 Data Deliver/Contact Options: of of com Fax: * * * (860) 645-0823 Data: * * * (860) 645-102 Data: * * *	C30138 Mon ey Hill (C3 - 21'0) Project P.O: C3-2(U C30 Tom May and CTmy and Content to this section MUST be Ext (accounted (CM) (MUST be Ext (accounted (CM) (MUST be Borte Quantities				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		65 65 67 67		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	333		I CI MA Data Format	GWPC	GA Leachability Z GA PMC C GW-3 C GW-3 C GA Leachability C GB PMC C S-1 C C GA Leachability C GB PMC C S-2 C C C C C C C C C C C C C C C C C C C	Objectives C RES DEC SW Protection C B-CW I/C DEC SW Protection	
	PHOENIX CT/MA/RI CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Environmental Laboratories, Inc. Email: makina@phoenixlabs.com Fax (860) 645-0823	Customer: EKI Project: Address: 80 Eastern Blvd Ste 5 Report to: Glastonbury, CT 06033 Invoice to: Quote #	Sampler's Client Sample - Information - Identification Sampler's Client Sample - Information - Identification	le: ng Water GW=Ground Water SW=Surface Water WW=Waste Wat Vater SE=Sediment SL=Sludge S=Soil SD≠Solid W=Wipe OIL- Liquid X =(Other)	e ed	7P-2(1-2) 301 301 311 1:10 7P-2(2-3) 91/5 91/5	77-4 (2-3)	83138 TP-6 (1-2) 1 4:30 XX 82139 TP-6 (2-3) 1 4:35	TP-8 (1-3) 1 9	T1-0(1-2) 1 9	TP-10 (2-3) 4	(2-3) 🕊 🗸	ACCEPTED by: ALL ALL COLOMON	d 8125/20 13:43	naround Time: 1 Day* Z Standard 2 Days*	1	

		×	-				<u>CT/MA/RI</u> CHAIN OF CUSTODY RFCORD	A OF CUST		CORD			Cooler: Coolant: IPK □ Temt			
	PHK Environme	PHOENIX Environmental Laboratories, Inc	ries, In	Allis		587 Ea: Ema	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: makrina@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-1102	ddle Tumpike, P.O. Box 370, I akrina@phoenixlabs.com Client Services (860) 6	, Manchester, CT 060 Fax (860) 645-0823 645-1102	, CT 06040 45-0823		Email:		act Options:	com	
	Customer: Address:	EKI Horu 80 Eastern-BI	Blvd St	te 5			Project: Report to:	F	HONLY Two M what		C3013 k @ ekî	H1 11 C30138 (5 m. 24 @ ehi consul-400	Pro	ject P.O: C3 - 2(D This section MUST be		138
			CT	8			Invoice to: Quote #	1-1 1	545 (20		B EKI	eki larei f. com	<u>`</u> 3	completed with Bottle Quantities.		
				+												
	Sampler's Signature	Client Sample - Information - Identification	mation - Id	entificatio	Date: 5	25/23	·	CARE HUS SIG			$\langle \rangle$			140001 - 11	$\overline{\langle}$	
	Matrix Code: DW=Drinking Wate RW=Raw Water Si B=Bulk L=Liquid X	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=0il BFBML E-Litudi X = (Other)	SW=Surfac∈ le S=Soil S ir)	Water W D=Solid	W =Waste W W =Wipe OI		A REAL ST.							ILOSS - THE		X
	PHOENIX USE ONLY SAMPLE #	Customer Sample		Sample Matrix	Date Sampled	e e	SAN GANIST				S INTER S	100 100 100 100 100 100 100 100 100 100	2	A LAND	a alliga allard	
	×3136	76	ħ		8/25/13		XXX	XXX	×		36) J				
*	83(37	- 13(4-S)	-	-	10 515					7					
	85158	`	(2-	_	+	10 :20	×	×		-	8	2				
	83139 721UN	TP-14 (2-	2-3)		+	10,20	×××	××××	×		2 2 7	-20			T	
	11128		(d-5)			96:95	X	X	×							
	ehiel	<u>, (6 (</u>	(2-1)			0 1-10					~6.					
	54152	1 41-02	(2-1)		+	2, 5 5, 5				_	- 0					
3,	U MICA	1-1-1	6-2		-	10:55					<u>م</u> م	4				
	23146		(2-1)			11,00										
	83[47	J 21-18 (2-2	>	,	507,11					8					
	Relinquished by: Methics manant.	NAN A	Accepted by:	folo Mon		Date:	Time:		<u>.</u>	CI RCP Cert	¥ 	MCP Certification	-	Data Format		
	# Cole		Eucle			8/2523	134				00 00	GW-1	CS-1/RCGW-1	PDF GIS/Key		
			`						ability				L RCS-2/RCGW-2			
	Comments, specia	comments, special requirements of Regulations:	igulations:	4	•	5	Time: V Standard	<u>}</u>			□ □ ? ?			Data Package		
(Hold	2 1 2 8 4 1 1 8 8 4 1 1 8 8 4 1 1 8 8 4 1 1 8 8 1 1 8 8 1 1 8 8 1 8 1		2			Other	GA -GW		RES DEC				Full Data Package*	age*	
Ð		OCKTR Received	TP-15(1	\$	4 Uays		GB -GW Objectives			S □	SW Protection		□ Other		
) - Pag	*MS/MSD are cons accordance with th	*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	nd will be b	illed as st	tch in	* SURCI	* SURCHARGES MAY APPLY			State where samples were collected:	samples w	ere collecte	Ë	* SURCHARGE APPLIES	PLIES	
	2023 08 28 Activations as noted	ctivations as	noted	S	Turter O: My	July								Form PEL126 Rev. 1/23	ev. 1/23	